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a b s t r a c t 

In recent years, underwater video technologies allow us to explore the ocean in scientific and noninva- 

sive ways, such as environmental monitoring, marine ecology studies, and fisheries management. How- 

ever the low-light and high-noise scenarios pose great challenges for the underwater image and video 

analysis. We here propose a CNN knowledge transfer framework for underwater object recognition and 

tackle the problem of extracting discriminative features from relatively low contrast images. Even with 

the insufficient training set, the transfer framework can well learn a recognition model for the special 

underwater object recognition task together with the help of data augmentation. For better identifying 

objects from an underwater video, a weighted probabilities decision mechanism is introduced to identify 

the object from a series of frames. The proposed framework can be implemented for real-time under- 

water object recognition on autonomous underwater vehicles and video monitoring systems. To verify 

the effectiveness of our method, experiments on a public dataset are carried out. The results show that 

the proposed method achieves promising results for underwater object recognition on both test image 

datasets and underwater videos. 

© 2017 Elsevier B.V. All rights reserved. 
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. Introduction 

Despite the fact that the ocean plays a very foundational role

f human life, we have a limited ability to explore the underwater

orld for a long time in history. Today’s technologies and materi-

ls allow us to explore the ocean in deep and observe the under-

ea environment continuously. Undersea exploration can help us to

etter understand marine ecosystems and environmental changes.

utonomous underwater vehicles (AUV) and video monitoring sys-

ems give us opportunities to make detailed observations and col-

ect samples of unexplored ecosystems. Specially underwater video

echniques play an important role in observing macrofauna and

abitat in marine ecosystems [1,2] , which provide abundant infor-

ation for oceanography and fisheries science research. Underwa-

er video based applications are increasingly developed in marine

cology studies and fisheries management. The most popular and
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idely reported cases in literatures are counting and measuring

sh [3] , investigating coastal biodiversity [1] , observing species be-

avior [4] , and exploring the undersea terrain [5] . 

Object detection and recognition techniques have been com-

only used on videos analysis for the assessment of animal

opulations. With the underwater cameras, in recent years, a

ew research studies have been investigated for fish detection,

ecognition [6] , tracking [7] and counting. In contrast to the

onventional fishery monitoring approaches including mark- 

ecapture techniques and gill netting [8] , the underwater video

ased methods have advantages such as accurate species count-

ng due to long term observation and environmental sustainability

ithout disturbing their habitat. However, the low-light and high-

oise scenarios pose several great challenges for the underwater

ideo analysis. (1) Firstly, low illumination environments cause rel-

tively low contrast background, which can confuse the traditional

nterest point detectors and produce weak descriptors. (2) Sec-

ndly, the object may appear to be of significantly different shapes

ver various camera angles due to the freely swimming environ-

ent. (3) Thirdly, most of underwater videos are of low resolu-

ion and low saturation, thus discriminative information is limited

https://doi.org/10.1016/j.neucom.2017.09.044
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Fig. 1. Illustration of the proposed framework by taking AlexNet as an example. 
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to recognize objects from the videos. Above all, most state-of-the-

art image and video analysis methods suffer seriously from these

drawbacks. 

All the above issues motivate us to design a novel solution

for underwater object recognition from low-contrast and low-

resolution underwater videos. Fig. 1 shows the proposed frame-

work for object recognition tasks on underwater videos. It can be

seen from the illustration that an offline deep Convolutional Neu-

ral Network (CNN) model is firstly learned by proposing a transfer

approach in order to overcome the insufficient training data prob-

lem. Then, with the pre-trained underwater CNN model (UW- CNN ),

a real time object recognition system is designed for underwater

videos. The advantages of this work is that: (1) As the interest-

ing points are difficult to be detected from the low-contrast and

low-resolution images, the state of the art CNN method gives us

a chance to produce abstract discriminative features from the ob-

ject. Fig. 2 illustrates a comparison between the SIFT and CNN re-

sults. We can see that only a few interest points are detected on

the object using the SIFT method. Most of them are tedious and

do not contain powerful discriminative information. So it is better

to identify the object from its shapes rather than local features.

Fig. 2 also visualizes part of the middle layers of the CNN out-

put. It can be observed that the global shape information is well
aptured. (2) To overcome the predicament of “data-hungry” of

NNs with limited underwater training data, we introduce the

ransfer learning to learn a special CNN model for underwater ob-

ect recognition together with the help of data augmentation tricks.

he data augmentation simulates various possible shapes of the

bject from normal ones to improve the robustness of the CNN

odel. (3) To identify the object from videos, we consider the im-

ortance of the objects presented in the successive frames. For the

nal decision of object recognition, the object closer to the camera

hould have a higher weight than the others. So in the real time

bject recognition system, a weighted probabilities decision mech-

nism is used. 

The main contributions of this work include: 

- We use the deep CNN model [9] for underwater objects recog-

nition from low-contrast and low-resolution underwater videos,

which can better achieve illumination invariant and overcome

the challenges caused by low quality videos. 

- We overcome the difficulties imposed by small size underwa-

ter training data by proposing a transfer learning framework,

which takes a fully-trained model from the ImageNet challenge

as prior knowledge. Moreover we enlarge the training dataset

by horizontal mirroring, rotating, subsampling and affine
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transformation in order to enrich the varieties of the image

dataset. To the best of our knowledge, it is the first to use deep

knowledge transferring method in the special field of underwa-

ter object recognition 

- A weighted probabilities decision mechanism based on trajec-

tory is applied to identifying objects. Then we propose a prac-

tical deep based application for underwater video analysis. 

. Related work and background concepts 

This work is related to numerous works that have been re-

orted in the fields of machine learning and computer vision,

pecifically in transfer learning and deep learning. This section

hortly reviews the related works, and presents some fundamen-

al concepts needed for the understanding of this work. 

.1. Object detection in underwater videos 

Marine biologists have employed the underwater video tech-

iques in marine ecology studies for many years [10,11] . To mon-

tor a marine ecosystem, researchers have widely used computer

ision techniques to detect underwater objects automatically [2,3] .

bout thirty years ago, stereo photographic techniques have been

pplied for determining the size and relative position of free-

wimming sharks [12] . Lines et al. [13] developed an image anal-

sis based system for estimating the mass of swimming fish from

ideo frames under a limited range of conditions. Harveya et al.

14] designed a stereo–video camera system to measure the accu-

acy and precision of the length and maximum body depth of tuna.

n automated system was developed to detect and track objects

n underwater videos collected by remotely operated underwater

ehicles (ROVs) for oceanographic research [15] . Spampinato et al.

16] presented a machine vision system for detecting, tracking and

ounting fish from real-time videos, which consists of a series of

ideo texture analysis, object detection and tracking procedures.

ater they also proposed an automatic fish classification system

o assist marine biologists in understanding species’ behaviors in

 natural underwater environment [17] . Hwang et al. [18] reported

n automatic segmentation algorithm for fish acquired by a trawl-

ased underwater camera system. They overcame the low bright-

ess contrast problem in the underwater environment by adopting

 histogram back-projection procedure on double local-thresholded

mages. Typically, Fisher et al. [19] presented a research tool to

upport marine ecologists’ research by allowing the analysis of

ong-term and continuous fish monitoring underwater videos. It is

uitable for discovering ecological phenomena such as changes in

sh abundance and species composition over time and different

reas. 

Lee et al. [20] widely investigated the vision-based object detec-

ion and tracking techniques for underwater robots. In their work,

umerous approaches have been tested to overcome the limita-

ions of underwater cameras, such as a color restoration algorithm

or the degraded underwater images, detection and tracking meth-

ds for underwater target objects. Currently the biggest challenge

or the underwater video analysis is the low-light and high-noise

aused by the uncontrolled illumination and noisy video capturing

nvironment. Chuang et al. [21] tried to overcome such difficulties

nd proposed a multiple fish-tracking algorithm for trawl-based

nderwater camera systems. Charalampidis et al. [22] also tried

o solve the blurry and poor illumination problem and proposed

 background subtraction and image segmentation method for im-

ges obtained using a two camera stereo system. However, the

bove mentioned methods rely heavily on manmade discriminant

eatures, which are hardly captured in low quality images. Accord-

ngly this work resorts to an abstract feature extracting method,

uch as deep feature learning. 
.2. Deep convolutional neural networks (CNN) 

Great successful advancements of computer vision have been

itnessed in the past several years due to the emerging technolo-

ies of deep learning and big data. Deep features extracted from

NN have achieved better performance than handcraft features

e.g., LBP, SIFT etc.) by a significant margin in many vision tasks,

uch as ImageNet challenge [9] . Most of the researchers begin to

ackle their vision problem using deep learning methods. The idea

f the CNN was proposed nearly twenty years ago by LeCun [23] ,

nd achieved impressive performance with the GPU hardware de-

loyment in recent years. 

A CNN is an architecture formed by a stack of convolutional and

ully connected layers where the output of one layer is the input

f the following layer, and essentially differs from other neural net-

orks by incorporating local connections, weight sharing and local

ooling. A well-known CNN model is AlexNet which is first intro-

uced for the image classification challenge by Krizhevsky [9] . By

isualizing the features of each layer, Zeiler and Fergus [24] found

hat the first layer of the network usually learn low-level fea-

ures such as edges and corners, and further layers learn high-

evel features. Currently the CNNs model has been widely used as

 powerful discriminant tools for object detection and recognition

25,26] , and obtained state-of-the-art results in many different ap-

lications. A typical research work [27] about underwater live fish

ecognition based on deep architecture is reported based on two

onvolutional layers. They used a spatial pyramid pooling (SPP) to

xtract information in variant to large poses. 

Some of the researches have shown that CNN models trained

sing the ImageNet can be regarded as generalized feature extrac-

ors, which powerful high level features are produced for many

ew related tasks [28,29] . The following section will give a short

ntroduction about how to transfer the well trained model to new

asks. 

.3. Transfer learning 

A major hypothesis for most machine learning tasks is that the

raining and future data must have the same distribution and be

n the same feature space [30] . However, in many current real

orld applications, we cannot obtain sufficient training data in

ome domain-specific tasks; meanwhile abundant training data are

vailable in the general domain. The study of transfer learning is

ocused on repurposing the knowledge learned previously to solve

ew problems with better solutions. This section briefly introduces

he definitions of transfer learning and more detailed reviews can

e found in literature [30] . 

Definition of transfer learning [30] . Given a source domain

 S = {X S , P (X S ) } and learning task T S = (Y S , f S ) , a target domain

 T = {X T , P (X T ) } and learning task T T = (Y T , f T ) , transfer learning

ims to help improve the learning of the target predictive function f T 
n D T using the knowledge in D S and T S , where D S � = D T , or T S � = T T .
he condition D S � = D T implies that either X S � = X T or P ( X S ) � = P ( X T ).

nd the condition T S � = T T implies that either Y S � = Y T or f S � = f T . 

When the target application creates huge data, but lacks of

round truth data to train a deep network model from scratch,

ransfer learning can be a powerful tool to enable training a large

arget network without overfitting [31] . Deep features extracted

rom CNNs trained on large annotated ImageNet dataset have been

uccessfully used as generic features for various new vision tasks

28,31] , e.g. arduous recognition task [32,33] . In this work, trans-

er learning is introduced for the object recognition task in low-

ontrast and low-resolution underwater videos. It takes the full

dvantage of remarkable discriminative power and well trained

yper-parameters of the deep CNNs. 
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3. Real time object recognition framework 

3.1. Offline deep CNN model via transfer learning 

A key advantage of Deep Learning is its ability of learning sta-

ble and robust features from massive amounts of data. However,

one of the most important preconditions is that an informative

dataset should be collected, which is used to estimate millions of

parameters used by deep layers. It is difficult and costly to obtain

an ideal largely labeled underwater image data. To solve this prob-

lem, this work firstly enlarged the dataset using label-preserving

transformations [34] , then proposed a transfer learning approach

for the underwater object recognition task with insufficient under-

water images. The trained deep CNN model can be then used for

real time live object recognition from underwater videos. 

3.1.1. Data augmentation 

For illustrating the procedure of proposed system, this pa-

per takes the ground-truth data from the Fish4Knowledge project

[19] to train the deep UW- CNN model for underwater object recog-

nition. The fish species are manually labeled by following the in-

structions from marine biologists [35] . To enhance the robustness

of our model, we extend the image dataset with extra three cate-

gories, i.e., stone, coral and seawater. We will show the necessity

and practicability in the later section. 

A large amount of data is one of the core issues for deep

learning, making the learning model effective and preventing over-

fitting. As the size of training underwater image data is small,

data augmentation can be one of keys to improve the model per-

formance. In this work, we employ four distinct forms of image

set augmentation, i.e., horizontal mirroring, crop, subsampling and

affine transformation, all of which allow transformed images to be

generated from the original images with the same label. 

We first simply flip all the images horizontally to simulate

fishes swimming in different directions. To simulate the environ-

ment under occlusion, we then crop the images by removing about

one third on the right and left respectively. Thirdly, as the objects

can present in any distance in the front of the cameras, we down-

sample the images to make the objects seem a little far away from

the cameras. Finally a sine transform based affine transformation

is applied to each training image so as to produce more images of

every object from different view angles. 

In many imaging systems, affine transformation is applied to

tackle pose-invariant object recognition problem by geometrically

warping the specific pose into the frontal pose [36] . To the con-

trary application in our work, affine transformation is used to

warping the frontal pose of objects to form various views. The

affine transformation can be equally regarded as the composed ef-

fects of translation, rotation, isotropic scaling and shear. For an ob-

ject image, we first insert it into a plane coordinate system with

the center of image aligned at the origin of the coordinate sys-

tem. Then different scaling transforms act on the images according

to the coordinates. Given an m × n image I , and the coordinates

of each pixel is denoted as {( x,y ) ∈ I | x = 1,2,…, m; y = 1,2,…, n },

the new value of x coordinate can be calculated as formula ( 1 ) by

affine transformation with angle α. 

x ′ = 

⎧ ⎨ 

⎩ 

x + sin α
(

x − m 

2 

)
, x ≥ m 

2 

x − sin α
(

x − m 

2 

)
, x < 

m 

2 

(1)

The formula ( 1 ) shows that affine transformation act on the im-

age according to the position of x . And the new image is formed as

{( x’, y ) ∈ I | x’ = 1,2,…, m; y = 1,2,…, n }. The image dataset is quadru-

pled in size by affine transformed with α = −10 °, −20 °, 10 ° and

20 °. It can be seen that the affine transformation is only performed
n horizontal. The reason is based on the observation that under-

ater objects (especially for fishes) always keep their body vertical

n the water. 

.1.2. Transfer learning for low-contrast and low-resolution 

nderwater images 

As mentioned before, more than 60 million parameters con-

ained in the CNN architecture have to be learned with a large

mount of training data. Given the “data-hungry” nature of CNNs

nd the difficulty of collecting large-scale underwater image

atasets [28] , the applicability of CNNs directly to our underwa-

er object recognition tasks appears a quite difficult challenge. To

ddress this problem, we propose a transfer learning approach for

he special object recognition task by transferring the parameters

rom a full trained model and fine-tuning the model using a lim-

ted amount of underwater images. 

The ImageNet dataset is a complicated benchmark in object

ategory classification and object detection. It consists of 14 mil-

ion images with 10 0 0 categories [37] . Our solution of underwater

bject recognition is to transfer knowledge from the source CNN

odel learned via ImageNet to our target domain, as illustrated in

ig. 1 . However the labels, quality and distribution of images are

uite different in the source and target domains. The CNN model

earned from ImageNet cannot be directly used as a feature extrac-

or in the underwater environment. So the key idea of our solution

s that the knowledge from the source domain will be recognized

s priori values for the parameters of the target CNN model. To

chieve our goal, we have to design a same architecture of CNN

n the source and target domains. Then the parameters of the CNN

odel in the source domain (here ImageNet) are transferred as the

nitialization of the target CNN model. Finally the training proce-

ure in the target domain could be taken as supervised fine-tuning

ask with our augmented underwater dataset to seek a suitable

odel. This work can also be regarded as transferring the recog-

ition capabilities from general domain to a specific domain. 

We formalize the transfer problem as follows. 

(1) The source domain D S = {X S , P (X S ) } is the ImageNet learn-

ing problem, where X S is the learning sample of ImageNet

and X s is the feature space output from CNN. The task T S =
(Y S , f S ) of ImageNet classification with deep CNN consists of

two components: a label space Y and an objective predic-

tive function f S . Here the function f S is the deep CNN model,

and K S is the parameters contained in the first seven layers

which can be learned from the training data. 

(2) The target domain D T = {X T , P (X T ) } is the underwater ob-

ject recognition problem. The learning task T T = (Y T , f T ) is

to train the function f T with the help of the source domain.

In our transfer learning task, the source and target domains

are different, i.e., X S � = X T and Y S � = Y T . The aim of the transfer

task is to improve the target function f T using K S from the

source task as priori knowledge. Our method is a parameter-

transfer approach based on the hypothesis that individual

models for related tasks should share some parameters or

prior distributions of hyperparameters [30] . 

.1.3. Network architecture and knowledge utilization for object 

lassification 

In order to illustrate how the framework works, we take the

lexNet model [9] as an example. We first employ the eight layers

eep AlexNet model [9] trained on ImageNet as the source CNN

odel. The architecture of AlexNet, as shown in Fig. 1 , has five

uccessive convolutional layers ( C 1…C 5) and two fully-connected

ayers ( FC 6, FC 7). An additional softmax classification layer, also

alled fully-connected FC 8, is added to the end of the network to

redict the scores for the 10 0 0 categories. More specifically, details
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Fig. 3. An illustration of the object classification procedure for one frame. 
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f the description of the geometry of the seven convolutional lay-

rs and their setup regarding contrast normalization and pooling

an be found in the literature [9] . As shown in Fig. 1 , our solution

nly transfers the seven layers ( C 1…C 5, FC 6 and FC 7) of the source

omain to the target. As the target and the source tasks contain

otally different categories, the classification layer FC 8 should be

rained separately and can be removed by strong classifiers. 

On the source task, the weights in each layer are initialized

rom a zero-mean Gaussian distribution with a standard deviation

.01; the biases in the 2nd, 4th, 5th, and fully-connected layers are

nitialized with the constant 1, others with 0. The parameters of

ayers C 1…C 5, FC 6 and FC 7 are trained on ImageNet. More details

bout the training can be found in the literature [9] . We will finally

et a well-trained deep CNN model named ImageNet-CNN, and the

nowledge K S from this model. Here the knowledge K S is the well

stimated parameters of the first seven layers. 

On the target task, we will train a CNN model with the same ar-

hitecture of seven layers C 1…C 5, FC 6 and FC 7 as the source task.

he parameters of the target model are initialized by the knowl-

dge K S . As the first seven layers initialized by the knowledge K S 

s already a general extractor, the training procedure in the target

ask is indeed a fine-tuning problem which makes the parameters

uitable for the special domain. So we should set much smaller

nitial learning rates (e.g., use 0.001 instead of 0.01) for the first

even layers and fewer iterations in the training procedure. Fur-

hermore the classification function in the source CNN model is a

oftmax classifier that obtains the scores of 10 0 0 categories of the

mageNet. For the target CNN model, we initialize a new classifier

ith random values of 26 categories (in case of Fish4Knowledge

ataset). Here, the parameters of the FC 8 should be learned only

rom the underwater image set. So the learning rates for the eighth

ayer can be set as same as the source task, or even faster due to

ts fewer iterations. 

Finally we get a new deep CNN model called UW- CNN as shown

n our illustration example of Fig. 1 , which can be used as a clas-

ifier in the following underwater vision system. 

.2. Real time object recognition from videos 

Based on the deep CNN model described above, this work fur-

her develops a vision system for real time live object recognition

rom underwater videos. 

.2.1. Object detection and classification 

Detecting objects from the underwater videos is the first step of

he system. This can be done by resorting to background modeling

pproaches, which are common used for detecting the moving ob-

ects in the scene like in video surveillance [38] . The key idea is

o build a model of the background and compare this model with

he each frame in order to detect objects where a significant dif-

erence occurs. While a static background model might be appro-

riate for analyzing videos in well constrained environments, it is
neffective for most practical situations such as unconstrained un-

erwater videos. The underwater videos are really unconstrained

ideos suffering from some technical issues including sudden light

hanges, low-quality videos, and bad weather conditions [39,40] .

his work employs the ViBe [41] background subtraction method

s the object detection algorithm, which is a fast and robust non-

arametric model [42] . Even the ViBe method may pose some false

ositive patches such as stones and corals, such problem can be

ell handled by our UW- CNN classification model. 

Give one underwater video as shown in Fig. 3 , the object de-

ection module will produce a series of patch proposals F { I 1 , I 2 ,…,

 n } for each frame F by ViBe. Every patch will be the input of the

lassifier UW- CNN and obtains a label distribution vector. The one

chieved the highest probability is regarded as the label of these

atches, such as the label Amphiprion clarkia for the first patch.

ig. 2 also shows that the classifier compensates for the mistake

unwanted-object patch: coral) made by ViBe-based object detec-

ion due to the extension for the categories of the dataset. 

.2.2. Trajectory based object recognition 

Individually identifying objects frame by frame has some disad-

antages and is meaningless for practical applications. For exam-

le, (1) the classification accuracies are decreasing as the object

oving far away from the cameras, which may cause a lot of mis-

lassification results for the same object; (2) one object may ex-

ibit various postures as they are freely swimming and switching

irections very often, which may also confuse the classifier; (3) it

s more practical that statistical records should be done based on

ideos instead of frame such as fish populations investigation and

arine ecosystems monitoring. Thus, it is better to implement the

bject recognition element based on a series of frames according

o the motion trajectory of the object. For object tracking, we em-

loy the covariance based tracking algorithm [43] , which has been

ell proved in practice, to explore a series of patches { f 1 , f 2 , …, f T }

or the same fish in the video sequences. 

This work presents a weighted probabilities decision mecha-

ism which can be applied on the trajectory to identify the objects.

t can be formalized as formula (2) , in which p t is the label distri-

ution given by the classifier for patch f t , ω t is the weight of f t and

 is the number of frames the object present. And the weight ω t 

s defined based on the diagonal length of the image. The weights

f each patch are defined by the normalized diagonal length of the

mage patch. 

abel = argmax 
i 

P ( i ) , P = 

T ∑ 

t=1 

ω t p t (2) 

Fig. 4 further gives an illustration for the calculation of la-

el probabilities and its procedure of decision making. The ob-

ect shows quite different orientations and appearances in its mov-

ng trajectory. When a ‘dascyllus reticulatus’ swims directly to the

amera in the first frame, and is misclassified as ‘scaridae’ with

he highest probability 0.620 . As it moves close to the camera
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Fig. 4. An illustration of the trajectory based fish recognition. 

Table 1 

Distribution of categories in the dataset. 

No. Categories Samples No. Categories Samples 

1 Dascyllus reticulatus 12,112 14 Zebrasoma scopas 90 

2 Plectroglyphidodon dickii 2683 15 Hemigymnus melapterus 42 

3 Chromis chrysura 3593 16 Lutjanus fulvus 206 

4 Amphiprion clarkii 4049 17 Scolopsis bilineata 49 

5 Chaetodon lunulatus 2534 18 Scaridae 56 

6 Chaetodon trifascialis 190 19 Pempheris vanicolensis 29 

7 Myripristis kuntee 450 20 Zanclus cornutus 21 

8 Acanthurus nigrofuscus 218 21 Neoglyphidodon nigroris 16 

9 Hemigymnus fasciatus 241 22 Balistapus undulatus 41 

10 Neoniphon sammara 299 23 Siganus fuscescens 25 

11 Abudefduf vaigiensis 98 24 Stone 120 

12 Canthigaster valentini 147 25 Coral 93 

13 Pomacentrus moluccensis 181 26 Seawater 51 
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and shows its clear outline, the classifier can predict a higher

probability for the right category. It is evident that the closer it

appears the more confident result we get. So we deduce a weight

ω t for each patch according to its size (the length of diagonal can

better reflect the size of the image patch). It can be seen from Fig.

4 , the output of the last patch will play a more important role in

forming the final label distribution P with a higher weight. The fi-

nal decision will be made according to the highest probability in

the weighted-sum distribution P . 

4. Experiments and results 

Simulations of the proposed system are carried out on the

Fish4Knowledge video and the fish analysis dataset [19,39] . The

proposed UW- CNN model is evaluated on the 23 categories fish

recognition ground-truth dataset [44] . The dataset is created from

a live video dataset resulting in 27,370 verified fish images. The

whole dataset is divided into 23 categories and each category

is presented by a representative species, which is based on the

synapomorphies characteristic from the extent that the taxon is

monophyletic. As mentioned earlier, we extend the image dataset

with another three unwanted categories, i.e., stone (120), coral (93)

and seawater (51), as the aid for false positive results by fish de-

tection. 

We use the Caffe [45] package to train and fine-tune the CNN

with the same structure and parameter settings as Krizhevsky et al .

[37] . suggested. The codes for object detection and tracking are im-

plemented using the OpenCV platform. And we ran experiments on

a dual 8-core Intel Xeon E5-2650 processor, with a Tesla K40 (2880

cores and 12 GB of RAM). 

4.1. Results of fish species recognition from images 

Table 1 shows the distribution of the samples used in our ex-

periments. The dataset is very imbalanced where the most fre-

quent species is about 500 times more than the least one. 
For estimating the performance of the proposed method, the

otal images are divided into three subsets: 5/7 for training, 1/7

or validation, and 1/7 for test [27] . Actually it is a seven-fold cross-

alidation is used. Finally the average performance of the ten times

unning will be calculated as the final result. 

As the proposed framework is general for employing any deep

NN models, we first compare the performance of various kind

f existed CNN architectures, i.e., AlexNet model [9] , GoogLeNet

46] and OxfordNet(VGG-16) [47] . The results are shown in Table 2 .

e can see that AlexNet achieves the best performance. AlexNet

as originally designed to classify over ImageNet. OxfordNet and

oogLeNet was designed to be a direct improvement over AlexNet

or the task of classifying ImageNet. Compared to AlexNet of 8 lay-

rs, they are more complex. For example, GoogLeNet has 22 layers,

nd need more computing power than Alexnet. So it is still difficult

o fine-tune the transferred parametrical knowledge of OxfordNet

nd GoogLeNet with limited underwater dataset. 

Moreover the input style of color model may also affect the per-

ormance. So we also carry out comparison experiments with dif-

erent color models. Table 2 report the results with RGB and HSI

mage data as input respectively. It shows that the input of RGB

mages performs much better. The reason is that the Blue (B) and

reen (G) channels can provide much more discriminative infor-

ation because the blue-green channel is absorbed the least in

ater. Meanwhile the low illumination confuses the hue (H), satu-

ation (S), intensity (I) channels. 

Hereby we take the RGB and AlexNet (RGB-Alex) as the input

nd CNN model of the proposed framework in the following exper-

ments. Then, we compare four CNN-based method used as feature

xtractors against the representations for low-contrast and low-

esolution underwater images classification. As mentioned in the

bove sections, a strategy of fine tuning all eight layers, includ-

ng the eighth classifier layer, is suggested. According to the cho-

en classifier Softmax and SVM, we denote the UW-CNN model as

NN-Soft and CNN-SVM respectively. Another strategy commonly
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Table 2 

Results of classification precision with different deep networks via cross validation test. 

No. Categories RGB-Alex HSI-Alex RGB -GLeNet HSI -GLeNet RGB-VGG HSI -VGG 

1 Dascyllus reticulatus 100.0% 99.79% 100.0% 60.00% 100.0% 0 

2 Plectroglyphidodon dickii 99.77% 99.87% 98.67% 99.61% 99.45% 99.70% 

3 Chromis chrysura 99.60% 99.21% 99.21% 96.31% 99.79% 96.23% 

4 Amphiprion clarkii 100.0% 100.0% 99.54% 98.52% 98.92% 99.16% 

5 Chaetodon lunulatus 100.0% 100.0% 99.95% 99.78% 99.97% 99.92% 

6 Chaetodon trifascialis 99.38% 99.38% 99.96% 99.82% 100.0% 99.82% 

7 Myripristis kuntee 100.0% 99.46% 94.15% 93.57% 99.42% 94.15% 

8 Acanthurus nigrofuscus 96.41% 95.41% 99.75% 76.30% 100.0% 98.27% 

9 Hemigymnus fasciatus 100.0% 100.0% 84.18% 82.14% 92.35% 91.33% 

10 Neoniphon sammara 100.0% 97.61% 98.61% 96.30% 99.54% 96.76% 

11 Abudefduf vaigiensis 100.0% 100.0% 95.17% 99.63% 97.40% 99.63% 

12 Canthigaster valentini 100.0% 100.0% 96.59% 84.09% 100.0% 90.91% 

13 Pomacentrus moluccensis 100.0% 98.21% 91.67% 95.45% 93.94% 96.21% 

14 Zebrasoma scopas 100.0% 100.0% 100.0% 98.76% 100.0% 97.53% 

15 Hemigymnus melapterus 100.0% 100.0% 75.31% 59.26% 95.06% 76.54% 

16 Lutjanus fulvus 100.0% 100.0% 86.49% 83.78% 97.30% 89.19% 

17 Scolopsis bilineata 100.0% 100.0% 99.46% 100.0% 98.92% 99.46% 

18 Scaridae 96.56% 97.73% 88.64% 93.18% 97.73% 95.45% 

19 Pempheris vanicolensis 100.0% 98.30.0% 100.0% 94.00% 100.0% 94.00% 

20 Zanclus cornutus 100.0% 100.0% 100.0% 96.15% 100.0% 96.15% 

21 Neoglyphidodon nigroris 100.0% 100.0% 72.22% 83.33% 94.44% 100.0% 

22 Balistapus undulatus 100.0% 100.0% 71.43% 35.71% 85.71% 35.71% 

23 Siganus fuscescens 100.0% 100.0% 88.89% 88.89% 94.44% 88.89% 

24 Stone 100.0% 100.0% 90.91% 27.27% 100.0% 95.45% 

25 Coral 100.0% 100.0% 77.78% 22.22% 100.0% 22.22% 

26 Seawater 100.0% 80.00% 41.67% 0 66.67% 0 

Avg. 99.68% 98.67% 90.39% 79.39% 96.58% 82.80% 

Table 3 

Results of classification precision with state of the art methods via cross validation test. 

No. Categories CNN-SVM CNN-Soft CNN-Last DeepFish [27] CNN-Dir 

1 Dascyllus reticulatus 100.0% 99.78% 97.56% 99.31% 95.12% 

2 Plectroglyphidodon dickii 99.77% 98.79% 92.13% 97.13% 41.32% 

3 Chromis chrysura 99.60% 99.75% 73.97% 98.64% 81.42% 

4 Amphiprion clarkii 100.0% 99.97% 99.81% 100.0% 92.44% 

5 Chaetodon lunulatus 100.0% 100.0% 99.38% 100.0% 95.15% 

6 Chaetodon trifascialis 99.38% 100.0% 99.21% 92.59% 52.83% 

7 Myripristis kuntee 100.0% 100.0% 95.58% 98.44% 84.55% 

8 Acanthurus nigrofuscus 96.41% 89.05% 66.49% 64.52% 11.81% 

9 Hemigymnus fasciatus 100.0% 98.15% 96.74% 100.0% 62.03% 

10 Neoniphon sammara 100.0% 100.0% 100.0% 100.0% 10 0.0 0% 

11 Abudefduf vaigiensis 100.0% 100.0% 100.0% 92.86% 63.16% 

12 Canthigaster valentini 100.0% 100.0% 99.07% 95.24% 43.75% 

13 Pomacentrus moluccensis 100.0% 96.09% 85.86% 100.0% 48.95% 

14 Zebrasoma scopas 100.0% 85.06% 72.31% 84.62% 8.12% 

15 Hemigymnus melapterus 100.0% 100.0% 91.11% 66.67% 47.37% 

16 Lutjanus fulvus 100.0% 100.0% 99.47% 96.55% 0 

17 Scolopsis bilineata 100.0% 100.0% 100.0% 85.71% 14.29% 

18 Scaridae 96.56% 86.67% 40.94% 100.0% 33.33% 

19 Pempheris vanicolensis 100.0% 100.0% 100.0% 100.0% 13.89% 

20 Zanclus cornutus 100.0% 100.0% 100.0% 66.67% 33.33% 

21 Neoglyphidodon nigroris 100.0% 84.62% 80.00% 50.00% 85.71% 

22 Balistapus undulatus 100.0% 95.45% 68.85% 83.33% 8.03% 

23 Siganus fuscescens 100.0% 100.0% 100.0% 100.0% 0 

24 Stone 100.0% 10 0.0 0% 100.0% null null 

25 Coral 100.0% 88.89% 80.00% null null 

26 Seawater 100.0% 100.0% 100,0% null null 

Avg. 99.68% 97.10% 89.50% 90.10% 48.55% 
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sed is that only the last layer is fine-tuned by fixing the pre-

rained seven layers, which is denoted as CNN-Last. We also try

o train the CNN model direct with the underwater images as a

aseline for transfer learning without data augmentation, which is

amed as CNN-Dir. We also report the classification precision re-

ults of DeepFish as a column name “DeepFish” [27] . 

The effectiveness of a method can be simply and directly mea-

ured by the classification performance on the dataset for clas-

ifiers. To better illustrate that, we report the precision and re-

all for every category as shown in Tables 3 and 4 , respectively.
recision is the fraction of the detected objects that belong to the

orrect category. Recall is the fraction of the objects that belong to

he query category that are successfully retrieved [48] . 

For the sake of impartiality, we calculate the mean value of per-

ormance of methods with the first twenty-three categories. As can

e seen from Tables 3 and 4 , the average value of performance (in

he “Avg.” row) denotes that CNN-SVM performs better than the

thers. 

There are several kinds of transfer strategies for a pre-trained

etwork being used as a feature extractor for these images.
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Table 4 

Result of recall via cross validation test. 

No. Categories CNN-SVM CNN-Soft CNN-Last CNN-Dir 

1 Dascyllus reticulatus 99.80% 99.40% 89.11% 73.18% 

2 Plectroglyphidodon dickii 99.96% 99.96% 94.11% 97.89% 

3 Chromis chrysura 99.66% 99.29% 94.80% 58.12% 

4 Amphiprion clarkii 99.97% 99.95% 97.99% 91.19% 

5 Chaetodon lunulatus 100.0% 99.91% 99.51% 86.59% 

6 Chaetodon trifascialis 100.0% 97.48% 79.25% 52.83% 

7 Myripristis kuntee 100.0% 98.24% 97.98% 52.39% 

8 Acanthurus nigrofuscus 94.95% 94.44% 64.14% 15.15% 

9 Hemigymnus fasciatus 100.0% 100.0% 98.11% 54.72% 

10 Neoniphon sammara 100.0% 100.0% 100.0% 2.86% 

11 Abudefduf vaigiensis 100.0% 95.56% 82.22% 13.33% 

12 Canthigaster valentini 100.0% 100.0% 89.17% 29.17% 

13 Pomacentrus moluccensis 100.0% 100.0% 98.84% 94.77% 

14 Zebrasoma scopas 97.33% 98.67% 62.67% 70.67% 

15 Hemigymnus melapterus 97.83% 100.0% 89.13% 19.57% 

16 Lutjanus fulvus 100.0% 100.0% 97.40% 0 

17 Scolopsis bilineata 97.96% 95.92% 95.92% 2.04% 

18 Scaridae 100.0% 100.0% 100.0% 26.92% 

19 Pempheris vanicolensis 100.0% 100.0% 94.74% 78.95% 

20 Zanclus cornutus 100.0% 100.0% 100.0% 23.08% 

21 Neoglyphidodon nigroris 100.0% 100.0% 72.73% 27.27% 

22 Balistapus undulatus 100.0% 100.0% 100.0% 83.33% 

23 Siganus fuscescens 100.0% 100.0% 100.0% 0 

24 Stone 100.0% 90.91% 72.73% null 

25 Coral 100.0% 10 0.0 0% 100.0% null 

26 Seawater 100.0% 100.0% 100.0% null 

Avg. 99.45% 99.08% 91.21% 45.83% 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 5. Results of classification precision with different layers of prior knowledge. 

Table 5 

Comparison results among deep and tradi- 

tional methods. 

Method Precision (%) 

Gabor 58.55 

Dsift-Fisher 83.37 

LDA 80.14 

DeepFish[27] 90.10 

RGB-Alex-SVM 99.68 

t  

m  

t

4

 

CNN-Last takes the pre-trained network on ImageNet and removes

the last fully-connected layer (the classifier layer). Then it trans-

fers the rest of the network as a fixed feature extractor and only

retrains the layer to the new task. The results have shown that

CNN-Last still performs better than CNN-Dir which is trained to-

tally by the underwater images, however, much lower than the

first two methods. The strategy as used in the first two methods

is that transferring the super-parameters as initials and retraining

the whole network with the limited underwater images. As shown

in the results, the latter strategy is suitable for the situation where

two domains are quite different from each other. And it can be

seen that our source domain and target domain are quite different,

e.g., high-quality images of the source and low-quality of the tar-

get. To further investigate the effective of the transferred knowl-

edge of ImageNet domain, we transfer the learned deep knowl-

edge at different layers from the well learned source model, and

fine tuning the network with data augmentation. Detailedly, the

first experiment is carried out without transfer any knowledge

from the source domain. The second experiment is conducted by

transferring the deep knowledge of the first layer from the source

domain as initial parameters. And third experiment is employed

deep knowledge of the first two layers from the source domain as

prior knowledge. In order, the eighth experiment is transferring all

the super-parameters as initials, which is the same as the above

CNN–SVM. The comparison results are shown in Fig. 5 . We can see

that the prior knowledge from source domain improves the per-

formance of the special target task. Moreover, we can also give an-

other conclusion by combining the result of CNN-Dir from Table 3 .

The data augmentation procedure, including horizontal mirroring,

crop, subsampling and affine transformation, improves the perfor-

mance from 48.55% to 61.54%. It shows that our solution works

well for the nonrigid object deformation problem of underwater

animals. 

At last, we take the Gabor features, Dense SIFT features and

LDA features as traditional comparison methods. And the dense sift

features of images are encoded as a fisher vector for each image.

Then we train the SVM classifier with all the traditional features.

Classification results are shown in the Table 5 . It can be seen that
 p  
he deep features achieve much higher performance than the man-

ade features. And our method with Alex as the network architec-

ure achieves the best accuracy. 

.2. Real time live object recognition from videos 

Many state-of-the-art object detection methods have been pro-

osed in recent years. This work does not pay much attention
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Fig. 6. Results of two different fish detection methods. 

Fig. 7. Results on real-time Fish4Knowledge videos. 
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n an object detection algorithm itself. We choose ViBe which

as been already reported as an effective tool for underwater ob-

ect detection [39] . Its main disadvantage is that a lot of false

ositives will be proposed compared with other methods [16] as

hown in Fig. 6 . However, it is preferred due to its ability of de-

ecting more proposals. To tackle the false positive problem, we

dd some unwanted patches such as stones, seawater and corals

n the training dataset so as to hand over the problem to the fol-

owing UW- CNN classification model. As illustrated in Fig. 6 , these

alse positive proposals will be classified as noise. The false posi-

ive proposals are mainly caused from water waves generated by

oving objects and objects are far away from the camera. From

able 3 , we can also see that all the test images of unwanted

xamples are classified correctly as there are. Readers can also

nd some supplement results from Github. ( https://github.com/

ingkongguye/Underwater ). 
The proposed framework for underwater object recognition can

e implemented for real video monitoring on AUV and underwa-

er observation systems. On the above mentioned experiment en-

ironment, our system processes images at 23 frames per second

FPS). As objects moving in the water are quite slow, we also re-

uce the frame rate by skipping one frame every two frames, in

rder to meet the real time requirement. Fig. 7 shows some re-

ults on real-time videos from Fish4Knowledge video dataset. The

tatistical results on the right side are calculated by the trajectory-

ased weighted probabilities decision mechanism which makes the

esults more accurate. 

Fig. 8 shows seven series patches on the trajectory of five dif-

erent fishes. We can see that, in the freely swimming environ-

ent, one fish has significantly different shapes. Fig. 8 also gives

he weights of every patch and probabilities of the truth category.

e can see that it is impractical to predict the correct label of

https://github.com/xingkongguye/Underwater
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Fig. 8. Results for five series patches of different fishes. 
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the object exactly for every patch, especially for the fifth series of

patches. It illustrates that small patches usually confuse the recog-

nition system; however the result can be rectified as the object

moves closer. With the help of the trajectory based decision mech-

anism, our framework can better identify the object appeared on

series of frames. Taking the fifth series of objects as an example,

the first several frames are misclassified due to the same size of

the patches and unfavorable angles. However the result will be

corrected as the object moving close to the camera. We also cap-

ture two trajectories of false positive proposals, i.e., water wave

and stone. By playing back the frames of the sixth trajectory, we

observed that a fish suddenly disappeared and churned the water.

For the seventh trajectory, we can see that there is a fish far away

from the camera appeared and disappeared from time to time. And

we can see that the classifier can recognition them as noise. 

5. Conclusion 

Through ocean observation, we can better understand the ocean

environment changes and the behaviors of its resident creatures.

With continuous scientific and technological advances, it allows us

to explore the ocean in scientific and noninvasive ways, such as

underwater video technologies. A plenty of underwater videos are

continually collected by autonomous underwater vehicles, under-

water robots and video monitoring systems, which give us oppor-

tunities to make detailed observations and collect samples of un-

explored ecosystems. In performing the ocean observing tasks, the

ability of underwater image and video analysis is the key to a suc-

cess, especially with the low quality videos in low-light and high-

noise underwater environments. Considering low contrast caused
y the low illumination environment, this work presented a CNN

nowledge transfer framework to extract abstract features from

elatively low contrast image, which can perform better than tra-

itional manual features in such a bad situation. To overcome in-

ufficient training set problem, a transfer approach is proposed to

earn a deep CNN model for special underwater object recognition,

ogether with the help of data augmentation. Even with the insuf-

cient training set trouble, the transfer approach can well learn a

eep CNN model for the special underwater object recognition. We

lso proposed a weighted probabilities decision mechanism based

n the trajectory of a series of frames, in order to better identifying

bjects from underwater video. This research work can be further

pplied on autonomous underwater vehicles to automatically iden-

ify underwater object in real time. 
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