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Abstract—Image enhancement is an important topic in the field 

of machine vision and image processing. Complex underwater 
environment poses great challenge for machine vision due to the 

turbid water medium. Serious scattering and absorption make the 

underwater images have complicated noise distribution. This paper 

proposes an underwater image enhancement model based on 

Encoding-Decoding deep CNN networks. We employ the 
convolution layers as encoding while deconvolution layers as 

decoding. The model achieves the image enhancement in an end-to-

end adaptive way rather than considering the physical environment. 

We provide several comparison experiments with different datasets. 

Experiments show that it outperforms state-of-the art underwater 
image restoration methods in underwater image defogging, 

denoising and color enhancement. Finally, the model is employed 

to handle the underwater images with the different levels of noise 

and shows good performance. 

Keywords—Encoding-decoding; Underwater image; Color 

restoration; Image enhancement 

I. INTRODUCTION  

Underwater object detection is mainly based on sonar 

technology for the cases of low-resolution applications. 

However, it fails to meet the high accuracy requirement of 
underwater discovery tasks  [1]. Recent years, underwater 

vision has attracted more and more attentions  in underwater 
applications such as underwater robot and coastal biodiversity 

investigation system. It  can capture the detail information of 
the underwater object. High-quality underwater images have 

important applications in research related to underwater vision, 

such as coral image classification [2, 3], underwater 3D 
reconstruction [4]. However, the complexity of noise and the 

variability of underwater environment are great challenges for 
the acquisition of high quality underwater visual images. 

Serious scattering and absorption caused by suspended 
particles in the turbid water environment make the underwater 

images have complicated noise distribution. Moreover, 
absorption rates are different in various visible spectrums. 

Therefore, color degradation also occurred in the underwater 

images. The quality and color restoration are important 
problems in the research of underwater image processing. In 

addition, the image enhancement is one of the effective ways to 
solve such problems. The current researches on underwater 

image enhancement main ly base on the physical properties 
analysis including visible spectrum attenuation and scattering 

during transmission, and the imaging properties of degraded 

images. All these methods can be summarized into the 
following categories. 

Category one: priori approaches 

In the case of the values of pixels gathering in small areas , 

the visual effect is bad for users. At the beginning, the classic 

histogram equalization (HE) algorithm was introduced to solve 
such problem, which transfers gray scale histogram of original 

image from concentration distribution to approximate average 
distribution. Therefore, the image vision effect can be 

improved. However, white drift phenomenon appears because 
of the different color temperature. Usually, the white balance 

algorithm is used to solve this kind of distortion, which consists 

of two steps: white point detection and then white point 
adjustment. He et al. [5] analyzed the large number of natural 

images and introduced the dark channel in the natural images. 
Then they proposed a dark channel priori image defog 

algorithm. Meanwhile, background light and transmission rate 
are also estimated for image defogging and enhancement [6]. 

Although the priori methods show good performance in  natural 
image denoising and enhancement, they did not achieve good 

performance for underwater image enhancement. The reason is 

that low light conditions of underwater environment do not 
satisfy the prior conditions. 

Category two: scene depth estimation 

Some of the image enhancement algorithms solve the 

visual ambiguity problem in the imaging process by calculating 
the depth of the scene [7, 8] and Fattal et al [9]. They firstly 

generate the spectral structure information of the image. Then 

the corresponding scene depth should be estimated to realize 
the image enhancement. However, the spectral structure 

information is difficult  to generate in the underwater 
environment. 

Category three: physical modeling 

The main cause of low quality of the underwater image is 

physical factors, such as optical. The intuitive solution is 

creating a physical model by the principle of physical 
attenuation in the underwater imaging process. In addition, the 

model parameters can be estimated by the test data. Then the 
model can be applied to underwater image denoising 

enhancement [10-12]. For example, a  physical model is 
established from two different angles to solve the scattering 

and color distortion problem [11]. At first the background light 



estimator and local adaptive filtering algorithm are employed 

to solve low contrast problem caused by scattering. Secondly, a 
new underwater imaging model can be introduced to 

supplement the attenuation of light, in  order to solve the blue 
tone problem of underwater images. Such kinds of physical 

model-based methods have achieved good enhancement effect 

in the experiment. However, a specific physical model can only 
be used for the noise environment with the given condition. It 

will fail when the environment of the suspended particles 
changing. 

Fig. 1. The ED-Alex network structure 

The fourth category: neural network + physical model 

Such methods divide the image denoising enhancement into 

two stages [13] [14]. Firstly, the transmission of low quality 
image is estimated by neural network. Then the obtained 

transmission rate is substituted into a physical model as a 
parameter. Finally, the physical denoising model can enhance 

the images. Although this method is a kind of end-to-end 
neural network model, the output of the network is 

transmission rate rather than the final high-quality images. So 

these methods also fail when the environment is changing. 

Over the past few years, deep learning achieves great 

performance in different areas , such as visual recognition [15] , 
natural language processing [16, 17]. And the convolution 

neural network (CNN) is one of the most popular methods and 
has many successful applications, such as image classification 

[18, 19] and image segmentation [20]. Inspired by the excellent 

performance of deep learning and the shortcomings of current 
underwater image enhancement algorithms, this paper proposes 

a encoding-decoding depth network based on convolution 
neural networks for underwater image enhancement. 

The main contributions are summarized as follows: (1) We 
propose a convolution-deconvolution deep network 

architecture as the encoding-decoding procedure. (2) To 

overcome the limitation of insufficient training data, transfer 
learning is introduced to network training. The fine-tuning 

process makes the model gradually fit the requirement of the 
underwater image enhancement. (3) A pixel to pixel (end-to-

end) network learning and image enhancement system is 
achieved without prior knowledge and physical models. (4) 

Our method shows good performance in underwater image 

enhancement. 

The following sections of this paper are organized as 

follows: The second part describes the network architecture. 
The third part presents the details of the proposed network, and 

discusses the role of the proposed network structure in the 
process of image enhancement. The fourth part describes 

underwater image enhancement experiments. The fifth part 
concludes the paper. 

II. ARCHITECTURE OF THE ENCODING-DECODING DEEP CNN 

NETWORKS 

Alexnet has achieved very amazing results in the computer 

vision classification challenge [18]. Its excellent performance 
motives us to transfer its pre-trained model parameters to our 

underwater image enhancement task. The continuous 
convolution of the Alexnet network cannot restore the details 

of the low quality image. So we introduce the deconvolution 

layers to refine the texture after denoising. The architecture of 
our deep network can be regarded as  an encoding-decoding 

symmetry Network. We name this convolution-deconvolution 
network as ED-Alexnet (Encoder-Deconder Alexnet). As 

shown in Fig. 1. 

The network structure consists of two parts: convolution 

layers and deconvolution layers. From Fig. 1, it can be seen 

that the convolution and deconvolution layers are symmetrical. 
The symmetric deconvolution layers effectively refine the 

details of the feature map of the convolution layers. Our 
network structure is novel while imports part of the well 

trained layers from Alexnet [18]. We discard the full 
connection layer in Alexnet and only keep the first three layers. 

The full connection layer has achieved great results in image 

classification tasks; however, our goal is an end-to-end image 
enhancement task, which  is different from the label-based 

classification. The full connection makes the feature mapping 
from two dimensions to one. It undoubtedly loses the two-

dimensional information and fails for the underwater image 
enhancement. We also abandon the pooling layers. Pooling and 

unpooling layers make the edge of the object clearer in the 
object recognition and semantic segmentation. However 

pooling is unnecessary for the image enhancement and 

denoising tasks. The main reason is that the pooling layer does 
make the feature graphs denser in the multi-to-one mapping 

operation, while the corresponding unpooling layer will bring a 
lot of noise information. In the unpooling mapping, at most one 

value comes from the original feature map, and the remainings 
are artificially generated (in general, filled with the value of 0). 

For the deconvolution layers of ED-Alexnet, we define the 

structure and the corresponding parameters be consistent with 
the convolution layers. The detailed configuration of the 



network is shown in TABLE I. The input of the ED-Alexnet 

model is a three-channel RGB image with size of 227*227. 
The size of image keeps unchanged by adding “pading” to 

feature maps during the process of convolution. The influence 
of network depth and parameters on the underwater image 

enhancement will be presented and discussed by experiments.  

TABLE  I. The ED-Alexnet configuration 

ED-Alexnet 

Layer name Kernel size Output num 

Conv1 11 96 

Conv2 5 256 

Conv3 3 384 

Deconv1 3 384 

Deconv2 5 256 

Deconv3 11 3 

III. ED-ALEXNET FOR UNDERWATER IMAGE ENHANCEMENT 

ED-Alexnet is an end-to-end deep model for learning the 
mapping from low quality underwater images to high quality 
ones. In this section, we will describe the details of each layer 
in the ED-Alexnet, and discuss the role of each layer for the 
underwater image enhancement. Then we further suggest a 
transfer learning way to optimize the network parameters. 

A. Strcture of each layer 

1) Convolution and activation operations 
Convolution layer of ED-Alexnet consists of a series of 

convolution filters that carry out the convolution operation on 
the input feature maps. The output of each convolution layer 
can be formulated as: 

𝑓𝑛
𝑙+1 = 𝑅𝑒𝐿𝑈(∑ (𝑓𝑚

𝑙 ∗ 𝑘𝑚,𝑛
𝑙+1 ) + 𝑏𝑛

𝑙 +1
𝑚 )               (1) 

where 𝑓𝑛
𝑙  and 𝑓𝑚

𝑙 +1 are the corresponding maps of the current 

layer 𝑙 and the following layer 𝑙 + 1, 𝑘 represents the size of 
the convolution kernel, the index  (𝑚, 𝑛) shows the mapping 

relation from 𝑚𝑡ℎ  feature map of the current layer to 𝑛𝑡ℎ  
feature map of the next, 𝑏𝑛

𝑙 +1 is the bias, and the 𝑅𝑒𝐿𝑈(∗) 

function represents the Rectified Linear Unit. From the left  
image of Fig. 2, we can see that the convolution is a multi-to-
one mapping operation of the feature map. The noise of 

images can be filtered by the mapping procedure. By adding 
“padding”, we can keep feature size unchanged before and 
after convolution. Through the cascade convolution filtering 
and activation operation, the original low quality image is 
enhanced by filtering the noise. 

2) Deconvolution operations 
Deconvolution was first proposed for visualizing the 

neural networks [21]. Hong et al. [22] employed the 
deconvolution to the image segmentation to get dense feature 

map from the unpooling. For the low-quality underwater 
image enhancement task, we introduce deconvolution 
operations to recover the missing details by the convolution 
operation. As shown in the right of Fig. 2, the deconvolution 
operation is one-to-multi mapping relation opposing to the 
convolution operation. The one-to-multi mapping operation 
makes the feature map larger than before. Therefore, we 
deduct the edge of the feature map to keep the size unchanged.  

Both the convolution and deconvolution filters can be 
trained from data. We employ the back propagation algorithm 
to update the weights of the deep model. 

 

Fig. 2. Convolution and deconvolution.  (Left) The upper feature map 
represents the original map in which the padding is shown in dotted line. The 
bottom is the feature map obtained by multi-to-one convolution operation. 
(Right) It  shows the corresponding deconvolution process. The top is the 
original feature map, while the bottom is the feature map obtained after the 
one-to-multi deconvolution mapping. 

B. Model optimization based on Transfer Learning 

A large amount of training data is the key to train the 

parameters in the deep network. This makes it  difficult  to solve 
the problem in  the field of underwater image processing with a  
small amount of dataset. Recent years, transfer learning is 
suggested to solve the problem of data starvation [23].Transfer 
learning can be summarized into two parts: instance based 
transfer learning and  feature based transfer learning. The goal 
of instance-based transfer learning is to find out the suitable 
test data from the train ing data and transfer these examples to 

the training data. It makes the target task learn knowledge 
transfer quickly [23]. Feature based transfer learning is only 
based on the feature representation of source data. In the 
underwater image enhancement, the source and target data are 
different. So  we use the feature transfer learning based on the 
heterogeneous space [24]. In this way, we can make the trained 
model more scalable.  

The Alexnet model structure contains up to 60 million 
parameters [18]. A large data set is necessary to train such a 

large network. However, the number of underwater images is 
relatively limited for deep learning. The proposed ED-Alexnet 
is an extension of Alexnet, but the number of layers and 
parameters are larger than Alexnet. In order to solve the 
problem of the lack of underwater image data, the convolution 
layers of ED-Alexnet are in itialized from the Alex model. We 
transfer the well-trained parameters as prior knowledge to our 
deep model. While  the deconvolution layers are initialized with 

the Gauss distribution. 

C. Training and testing  

Our training images come from 3359*2307 underwater 
photos that are collected in real environment. The underwater 
noise scenes are simulated by adding 30ml, 50ml, 70ml pure 
milk to 1 cubic meters of water respectively. In order to enlarge 
the data set, we crop patches (Stride is 66*66) form all the 

pictures. We finally get 10000 training images and 2000 
validation images for deep network learning. The training 



process of the network is an end-to-end training that maps low-
quality images to high-quality images. The mean square error 
is used as the loss function in the training process: 

𝐿(𝜃) =
1

𝑛
∑ ‖𝐹(𝑌𝑖; 𝜃) − 𝑋𝑖

‖2𝑛
𝑖=1                     (2) 

where 𝑛 is the number of training samples, 𝜃 is the weight of 
the network,  𝑌𝑖 and 𝑋𝑖  stand for the noise image and the clear 
image respectively [25]. Stochastic gradient descent method is 
used to minimize the loss function and standard back 

propagation is used to update network parameters. The Caffe 
toolkit [26] is used to implement the proposed network. 

To show the generalization performance of the proposed 
network, evaluation will also be performed on publicly 
available underwater TURBID datasets  [27]. 

IV. EXPERIMENT  

In this section, we first analyze and discuss the influence of 
network depth and various configuration on the underwater 
image enhancement. Then, we compare the proposed method 
with the current popular dark channel prior method [5], 
histogram equalization (HE) and Fattal et al[9]. 

A. Evaluation method 

Our underwater enhancement work has two purposes: 
removing noise and avoiding image distortion. To show the 

performance of noise removing, the peak signal-to-noise ratio 
(PSNR) is used as a quantitative assessment of the noise 
standard. We use PSNR index to evaluate image quality: 

𝑃𝑆𝑁𝑅 = 10 log10(
(2𝑛−1)2

𝑀𝑆𝐸
)                          (3) 

𝑀𝑆𝐸 =
1

𝐻∗𝑊
∑ ∑ (𝑋(𝑖, 𝑗) − 𝑌(𝑖, 𝑗))2𝑊

𝑗 =1
𝐻
𝑖=1             (4) 

where n is the pixel bit number. Formula (4) computes the 
mean square error between ground truth X and noisy image Y.  
H is the image’s height and W is the image’s width. The higher 
PSNR means the better denoising. We also hope to avoid the 

phenomenon of image distortion in the process of image 
enhancement. So the structural similarity index (SSIM) is 
suggested to evaluate the similarity between the enhanced 
image and the ground truth. SSIM measure the similarity 
between noisy image and groundtruth from three aspects: 
brightness, contrast, structure: 

𝑆𝑆𝐼𝑀(𝑋, 𝑌) =
(2𝜇𝑥𝜇𝑦+𝑐1)(2𝛿𝑥𝑦+𝑐2)

(𝜇𝑥
2+𝜇𝑦

2 +𝑐1)(𝛿𝑥
2+𝛿𝑦

2 +𝑐2)
                  (5) 

where 𝜇𝑥 and 𝜇𝑦 present the mean value of X  andY; 𝛿𝑥 and 𝛿𝑦 

present the variance of X and Y; and  𝛿𝑥𝑦  presents the 

covariance of X and Y. Therefore, the bigger the SSIM value, 
the smaller the distortion. 
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Figure. 3. Comparison output with various image enhancement methods on the same image. 



B. Denoising performance  

To investigate the influence of the depth of network on the 
denoising performance, we carry out different experiments on 

the tenth level degradation image from TURBID with various 
network configurations. As shown in TABLE II, we found 
that the deeper network does not mean the better performance. 
For example, the performance of conv3-deconv3 (3 layers 
convolution and 3 layers deconvolution） is better than 

conv5-deconv5. We believe that the padding operation in the 
convolution procedure brings noise. In the case of fewer 
network layers, the influence of padding is small. And it 
becomes much obvious when the network is deeper. So, for 
the proposed ED-Alexnet, the deeper network doesn’t mean 

the better underwater image enhancement performance.   

TABLE II. The performance of various network configuration. 

 PSNR SSIM 

5con-5decon 23.5627 0.6755 

3con-3decon 25.1086 0.7498 

2con-2decon 24.3907 0.7202 

 

TABLE III shows the performance of ED-Alexnet in  
comparison with dark channel priori (DCP), HE and Fattal et 
al [9] methods on underwater TURBID images dataset with 
different level of degradation. I10, I12, I14, I16 and I18 stand 
for images in TURBID dataset which degradation degree is 
10, 12, 14, 16 and 18. From the experimental results, we can 
see that our method achieves promising results than others . 
Fig. 3 shows the output of various image enhancement 
methods applied on underwater images from TURBID dataset. 

These images are captured on the same area with different 
degradation level. These images represent four different levels 
of degradation with different amount of milk added. Clear 
image without milk is shown on the left. Pictures in the first 
row present noise image at different degradation levels 
respectively. And the second, third, fourth, and fifth rows 
shows the results from ED-Alex, DCP, HE and Fattal et al 
respectively. 

TABLE III, Comparison results with various image enhancement methods 

PSNR 

 Noise  ED-Alexnet DCP HE Fattal  

I10 22.8020 25.1086 21.1060 11.7740 10.3240 

I12 20.6982 24.0255 21.0353 11.3553 9.8126 

I14 20.5300 23.5742 20.9521 11.2682 8.7241 

I16 19.4013 21.1036 20.2567 10.9658 9.4470 

I18 19.4793 20.5589 19.8501 10.6441 10.5408 

SSIM 

 Noise  ED-Alexnet DCP HE Fattal  

I10 0.7223 0.7498 0.7582 0.6193 0.1521 

I12 0.6284 0.6701 0.6539 0.5345 0.4267 

I14 0.6191 0.6623 0.6436 0.5396 0.1314 

I16 0.5931 0.6101 0.6083 0.4846 0.1230 

I18 0.5783 0.5908 0.5881 0.4398 0.2152 

We can see that DCP method can improve the luminance 
but cause the color distortion, which is also shown in Table 3. 
HE method makes serious exposure problem. The method of 
Fattal et al. fails the underwater task. Our method achieves 
promising results. It both improves the luminance and does 

not make color distortion. 

Figure 4 shows the effectiveness of the proposed method 
and comparison methods on the underwater image collected 
in our Lab. We can see that serious exposure and color 
distortion appeared with HE method. DCP method performs 
well on the better light condition, which can be seen from the 
lower right corner of the color board. However, it failed at the 
top left of the color board where the light condition is bad. 

The method of Fattal et al. failed in both scenes. In addition, 
we can see that our proposed method performs much better 
than others do. 

V. CONCLUTION 

Underwater imaging plays an important role in marine 
research. Due to the special physical properties of underwater 
environments, underwater images are different from common 
ones such as complicated noise distribution, serious scattering 
and absorption. In this paper, we proposed an underwater 
image enhancement model based on Encoding-Decoding deep 
CNN networks. We employ the convolution layers as 

encoding while deconvolution layers as decoding. The model 
achieves the image enhancement in an end-to-end adaptive 
way rather than considering the physical environment. We 
provide several comparison experiments with different 
datasets. Our method shows good performance in underwater 
image enhancement. 

REFERENCES 

[1] D. M. Kocak, F. R. Dalgleish, F. M. Caimi, and Y. Y. 
Schechner, "A Focus on Recent Developments and 

Trends in Underwater Imaging," Marine Technology 
Society Journal, vol. 42, pp. 52-67, 2008. 

[2] A. S. M. Shihavuddin, N. Gracias, R. Garcia, and J. Escartin, 

"Automated classification and thematic mapping of 
bacterial mats in the North Sea," in Oceans, 2013, pp. 1-
8. 

[3] M. D. Stokes and G. B. Deane, "Automated processing of 

coral reef benthic images," Limnology & Oceanography 
Methods, vol. 7, p. 157&ndash;168, 2009. 

[4] V. Brandou, A. G. Allais, M. Perrier, and E. Malis, "3D 

Reconstruction of Natural Underwater Scenes Using the 
Stereovision System IRIS," in Oceans, 2007, pp. 1-6. 

[5] K. He, J. Sun, and X. Tang, "Single Image Haze Removal 
Using Dark Channel Prior," IEEE Transactions on Pattern 

Analysis & Machine Intelligence, vol. 33, pp. 2341-53, 
2011. 

[6] R. Fattal, "Single image dehazing," vol. 27, pp. 1-9, 2008. 
[7] J. Kopf, B. Neubert, B. Chen, M. Cohen, D. Cohen-Or, O. 

Deussen, et al., "Deep photo: model-based photograph 
enhancement and viewing," Acm Transactions on 
Graphics, vol. 27, p. 116, 2008. 

[8] N. Hautiere, J. P. Tarel, and D. Aubert, "Towards Fog-Free 
In-Vehicle Vision Systems through Contrast Restoration," 



in Computer Vision and Pattern Recognition, 2007. CVPR 
'07. IEEE Conference on, 2007, pp. 1-8. 

[9] R. Fattal, "Single image dehazing," Acm Transactions on 
Graphics, vol. 27, pp. 1-9, 2008. 

[10] Y. Guo, H. Liu, Y. Chen, and W. Riaz, "Color restoration 
method for underwater objects based on multispectral 

images," in Oceans, 2016, pp. 1-5. 
[11] H. Lu, Y. Li, L. Zhang, and S. Serikawa, "Contrast 

enhancement for images in turbid water," Journal of the 
Optical Society of America A Optics Image Science & 

Vision, vol. 32, pp. 886-93, 2015. 
[12] M. Boffety and F. Galland, "Phenomenological marine 

snow model for optical underwater image simulation: 

Applications to color restoration," in Oceans, 2012, pp. 
1-6. 

[13] B. Cai, X. Xu, K. Jia, C. Qing, and D. Tao, "DehazeNet: An 
End-to-End System for Single Image Haze Removal," vol. 

25, 2016. 
[14] W. Ren, S. Liu, H. Zhang, J. Pan, X. Cao, and M. H. Yang, 

Single Image Dehazing via Multi-scale Convolutional 

Neural Networks, 2016. 
[15] R. Girshick, J. Donahue, T. Darrell, and J. Malik, "Region-

Based Convolutional Networks for Accurate Object 
Detection and Segmentation," IEEE Transactions on 

Pattern Analysis & Machine Intelligence, vol. 38, pp. 142-
158, 2016. 

[16] J. Andreas, M. Rohrbach, T. Darrell, and K. Dan, 
"Learning to Compose Neural Networks for Question 

Answering," pp. 1545-1554, 2016. 
[17] X. Li, T. Qin, J. Yang, and T. Y. Liu, "LightRNN: Memory 

and Computation-Efficient Recurrent Neural Networks," 

2016. 
[18] A. Krizhevsky, I. Sutskever, and G. E. Hinton, "ImageNet 

classification with deep convolutional neural networks," 
Advances in neural information processing systems, vol. 

25, pp. 1097-1105, 2012. 

[19] K. Simonyan and A. Zisserman, "Very Deep Convolutional 
Networks for Large-Scale Image Recognition," Computer 

Science, 2014. 
[20] E. Shelhamer, J. Long, and T. Darrell, "Fully Convolutional 

Networks for Semantic Segmentation," IEEE 
Transactions on Pattern Analysis & Machine Intelligence, 

vol. 79, pp. 1337-1342, 2016. 
[21] M. D. Zeiler, G. W. Taylor, and R. Fergus, "Adaptive 

deconvolutional networks for mid and high level feature 
learning," in IEEE International Conference on Computer 

Vision, ICCV 2011, Barcelona, Spain, November, 2011, pp. 
2018-2025. 

[22] H. Noh, S. Hong, and B. Han, "Learning Deconvolution 

Network for Semantic Segmentation," in IEEE 
International Conference on Computer Vision, 2015, pp. 
1520-1528. 

[23] W. Dai, Q. Yang, G. R. Xue, and Y. Yu, "Boosting for 

transfer learning," in International Conference on 
Machine Learning, 2007, pp. 193-200. 

[24] W. Dai, Y. Chen, G. R. Xue, Q. Yang, and Y. Yu, 

"Translated Learning: Transfer Learning across Different 
Feature Spaces," in Conference on Neural Information 
Processing Systems, Vancouver, British Columbia, 
Canada, December, 2008, pp. 353-360. 

[25] Y. Lecun, L. Bottou, Y. Bengio, and P. Haffner, "Gradient-
based learning applied to document recognition," 
Proceedings of the IEEE, vol. 86, pp. 2278-2324, 1998. 

[26] Jia, Yangqing, Shelhamer, Evan, Donahue, Jeff, et al., 

"Caffe: Convolutional Architecture for Fast Feature 
Embedding," Eprint Arxiv, pp. 675-678, 2014. 

[27] A. Duarte, F. Codevilla, J. D. O. Gaya, and S. S. C. Botelho, 

"A dataset to evaluate underwater image restoration 
methods," in Oceans, 2016, pp. 1-6. 

 

 
                            Turbid water              ED-Alexnet                    HE                                DCP                      Fattal et al . 

Figure  4. Effectiveness of the proposed method and comparison methods in underwater image collected in our lab.

 


