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Abstract: Turbid underwater environment poses great difficulties for the applications of vision technologies. One of the biggest
challenges is the complicated noise distribution of the underwater images due to the serious scattering and absorption. To
alleviate this problem, this work proposes a deep pixel-to-pixel networks model for underwater image enhancement by
designing an encoding–decoding framework. It employs the convolution layers as encoding to filter the noise, while uses
deconvolution layers as decoding to recover the missing details and refine the image pixel by pixel. Moreover, skip connection is
introduced in the networks model in order to avoid low-level features losing while accelerating the training process. The model
achieves the image enhancement in a self-adaptive data-driven way rather than considering the physical environment. Several
comparison experiments are carried out with different datasets. Results show that it outperforms the state-of-the-art image
restoration methods in underwater image defogging, denoising and colour enhancement.

1 Introduction
For a long time, underwater object detection is mainly based on
sonar technologies. Many successful applications have been
developed, such as seafloor mapping, underwater archaeology,
salvage and oil industry. However, sonar technologies fail to meet
the requirements of high precision underwater tasks, such as
underwater object detection [1] and 3D surface reconstruction of
underwater objects [2]. Recently, machine vision has drawn more
and more attention in underwater applications such as underwater
robot and biodiversity investigation system. Its advantage is that it
captures the detail characters of the underwater target, which are
valuable to object detection [3], recognition [4, 5] and surface
reconstruction. The advanced imaging devices make it possible to
gain high-resolution underwater images. However, the complexity
of the underwater environment brings serious noises and poses
great challenges to the acquisition of high-quality underwater
visual images.

From the viewpoint of visual perception, the serious noises are
caused by scattering and absorption due to the suspended particles
in the turbid water environment. Furthermore, the absorption rates
are different for various visible spectrums in such water
environment. Colour degradation commonly occurs in the captured
underwater images. Therefore, low quality and colour degradation
are crucial obstacles to underwater vision technologies. Image
enhancement and restoration have been studied for a long time in
the area of image processing. It could also be a solution to improve
the underwater images. One of the classic methods of normal
natural image optimisation is histogram equalisation (HE), which
can increase the global contrast of the image. It spreads out the
most frequent intensity values in order to improve the vision effect.
Some photograph enhancement methods try to solve the visual
ambiguity problem by estimating the depth of the scene [6, 7].
Better to do so, these methods usually generate the spectral
structure information first which is quite difficult in the underwater
environment. A most recent work on image denoising is the dark
channel priori (DCP) method proposed by He et al. [8]. The
motivation of DCP method is based on the observation that few
colour channels have very less intensity in the few pixels. So the
atmospheric light can be calculated in most natural images, such as
non-sky images. The DCP method has drawn high attention in the
normal image enhancement. However, the underwater environment
does not satisfy the priori conditions. Another research work is
carried out from the point of view of optical engineering. These

researchers consider that the main cause of low quality of
underwater image is optical and physical changes. The intuitive
solution is creating a physical model by the principle of physical
attenuation in the underwater imaging process [9–11]. In such
works, the experiment images are collected and utilised to fit the
model parameters. For example, Lu et al. [10] established a
physical model from two different angles to solve the scattering
and colour distortion problem. First a background light estimator
and a local adaptive filtering algorithm are employed to solve low
contrast problem caused by scattering. Then a new underwater
imaging model is introduced to supplement the attenuation of light
in order to solve the blue tone problem of underwater images.
Based on the optical physical characteristic, Liu et al. [12]
proposed a deep sparse non-negative matrix factorisation method
and showed effective performance for underwater image
enhancement. Fattal [13] also introduced a physically sound
method relying only on the assumption that the transmission and
surface shading are locally uncorrelated. However, a well-designed
and fitted model can only be suitable for one kind of noise images
within the given condition. It might fail when the underwater
environments are changed. In addition, recursive filtering and
contrast stretching techniques are also employed for image
enhancement [14–16].

So far, some research works are trying to solve the image
improvement problem from the data-driven technology. Over the
past decade years, deep learning achieves great performance in
different areas, such as visual detection [17] and scenes recognition
[18, 19]. Recently, some works [20, 21] employed some deep
learning methods on image denoising and enhancement. These
works are evolved from the physical models. They first build a
suitable physical model for certain underwater environment. Then
the parameters, such as transmission rate, can be learned by a deep
learning method. The learning procedure is a kind of end-to-end
neural network training. The advantage of these methods is that the
learned parameters are robust. However, it still works for special
environment because the physical model is designed in conditions.

As known to all, the convolutional neural network (CNN) is the
most popular method for image classification [22, 23] and
segmentation [24]. The main reason is that convolution layers can
filter most of the noises and capture the crucial details. In another
word, the convolution operation should be suitable for denoising.
The bad news is that the convolution operations smooth the image
and drop some local structure information. Luckily, the
deconvolution can recover the local information which is dropped
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during the convolution process. Motivated by the abilities of
convolution and deconvolution, this paper proposes an encoding–
decoding deep framework for pixel-to-pixel underwater image
enhancement.

The following sections of this paper are organised as follows.
The second section describes the framework of our proposed pixel-
to-pixel deep model for image enhancement and restoration. The
associated inner structure of the deep model and training
methodology are illustrated in Section 3. Afterwards, Section 4
presents dataset-specific experiment details and experimental
results. The conclusion of this work is presented in Section 5.

2 Pixel-to-pixel deep model
The CNNs achieved amazing results in the computer vision
classification challenge [22]. The features extracted from each
layer of the CNNs are able to capture all the important
characteristics of an image. It motives us to employ such
convolutional structures to filter the noises and retain the crucial
details of the underwater image. However, the continuous
convolutional operation of the CNNs cannot restore the details of
the low-quality image. So the deconvolutional layers are
introduced to refine the texture after denoising. The architecture of
our deep network can be regarded as a symmetry encoding–
decoding deep network, as shown in Fig. 1. The network
architecture consists of two parts: convolutional layers and
deconvolutional layers. From Fig. 1, it can be seen that
convolutional and deconvolutional layers are symmetrical. The
convolutional part is designed to filter the noises and keep the
crucial detail characteristics. The symmetric deconvolution part is
used to effectively refine the details of each feature map for the
corresponding convolution layer. Moreover, skip connection is
employed between the convolutional layer and deconvolutional
layer. It first accelerates the training process. Detail texture
information can be protected during the decoding process, because
low-level features of the convolutional layers capture more fine
details of the input images [25, 26]. 

As our goal is to achieve a data-driven based image
enhancement model, the super-parameters of our network are
essential. Therefore, the inner structure of the convolutional part
imitates the popular Alexnet [22] network. In the later section, we
will further discuss how to utilise the well-trained super-parameters
from ImageNet. The convolutional part first keeps the first three
layers and discards the full connection layers. The reason is that the
full connection makes the feature mapping from two dimensions to
one in order to input the vector to classifiers. Our purpose is to
design a pixel-to-pixel network for image enhancement task which
is different from the classification problem. Full connection
undoubtedly loses the two-dimensional information and fails at the
underwater image enhancement. Furthermore, we abandon the

pooling layers. Pooling and unpooling layers can make the edge of
the object clearer in the task of object recognition and semantic
segmentation. However, it is unnecessary and harmful to the image
enhancement and denoising tasks. The main reason is that the
pooling layer does make the feature graphs denser in the multi-to-
one mapping operation and spatial information within a receptive
field is lost during pooling [27]. Meanwhile, the corresponding
unpooling layer brings a lot of noise information. In the unpooling
mapping, at most one value comes from the original feature map,
and the remaining are artificially generated (in general, filled with
the value of 0).

For the deconvolutional part, the network structure and
corresponding parameters are defined to be consistent with the
layers of the convolutional part. The detailed configuration of the
network is shown in Table 1. The input is a three-channel RGB
image with size of 227*227. The influence of network depth and
parameters on the underwater image enhancement will be
discussed by experiments. 

3 Inner structure of the deep model
The proposed model is a deep pixel-to-pixel neural network for
learning the mapping from low-quality underwater images to high-
quality ones. In this section, we will describe the details of each
layer in the networks and discuss the role of each layer for the
underwater image enhancement. Then we further suggest a transfer
learning way to optimise the network parameters.

3.1 Convolution and activation operations

The convolution layer consists of a series of convolution filters that
execute the convolution operation on the input feature maps. The
output of each convolution layer can be formulated as

f n
l + 1 = ReLU ∑

m
f m

l ∗ km, n
l + 1 + bn

l + 1 (1)

where f n
l  and f m

l + 1 are the corresponding feature maps of the
current layer l and the following layer l + 1, k represents the size of
the convolution kernel, the index (m, n) shows the mapping
relation from mth feature map of the current layer to nth feature
map of the next, bn

l + 1 is the bias and the ReLU( ∗ ) function
represents the rectified linear unit. From the left image of Fig. 2,
we can see that the convolution is a multi-to-one mapping
operation of the feature map. The noise of images can be filtered
by the mapping procedure. To keep the size of image unchanged,
we add ‘padding’ to feature maps during the process of
convolution operation as the dotted lines illustrated in Fig. 2.
Through the cascade convolution filtering and activation operation,
the original low-quality image is enhanced by filtering the noise. 

In the visual recognition task, activation function is usually
used to compensate the linear model in the form of adding non-
linear factor. In this work, we also use the activation function
(ReLU) to retain and map features in our deep model, which can
remove redundant features. It might be a nice way to remove high-
frequency noise. In order to verify our assumption, we carry out
experiment on image enhancement with ReLU and without ReLU,
respectively. From Fig. 3, we can see that the ReLU activation
functions improve the performance. 

Fig. 1  P2P network structure
 

Table 1 Configuration of the deep model
Layer name Kernel size Output num
Conv1 11 96
Conv2 5 256
Conv3 3 384
Deconv3 3 384
Deconv2 5 256
Deconv1 11 3
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3.2 Deconvolution operations

Deconvolution was first proposed for visualising the neural
networks [28]. It has been used to get dense feature maps from the
unpooling in the work of image segmentation [29]. Here, we
introduce deconvolution operations to recover the missing details
during the convolution operations. As shown in the right of Fig. 2,
the deconvolution operation is a one-to-multi-mapping relation
opposing to the convolution operation. However, the one-to-multi-
mapping operation makes the feature map larger than before.
Therefore, we deduct the edge of the feature map to keep the size
unchanged.

3.3 Skip connection

Skip-connection was first proposed to avoid the vanishing/
exploding gradient problem [30]. It both improves the speed and
accuracy of deep networks. In our encoding–decoding model,
detail texture of the images might lose during the decoding process.
A recent study showed that skip-connection acts like ensembles of
relatively shallow networks [31]. In our work, skip connection is
introduced to avoid low-level features losing. Detail texture
information can be protected during the decoding process, because
low-level features of the convolutional layers capture more fine
details of the input images [25, 26] and contribute to the last few
deconvolutional layers. Meanwhile, it can also accelerate the
training process. As shown in Fig. 1, skip connection is employed
between the convolutional layer and deconvolutional layer. Here
skip connections perform identity mapping and the feature maps
are added simply pixel by pixel.

3.4 Model optimisation based on transfer learning

Both the convolution and deconvolution filters can be trained by
the data. We employ the backpropagation algorithm to update the
weights of the deep model. Here a large amount of training data is
the key to train the parameters in the deep network. However,
underwater images are expensive to capture because of the
complicated and expensive underwater scientific apparatus.
Therefore, we cannot obtain sufficient training data. This makes it

difficult to solve the problem in the field of underwater image
processing.

Recent years, transfer learning is suggested to solve the
problem of data starvation [32]. Transfer learning can be
summarised in two parts: instance-based and feature-based transfer
learning. The goal of instance-based transfer learning is to find out
the suitable test data from the training data and transfer these
examples to the training data. It makes the target task learn
knowledge transfer quickly [32]. Feature-based transfer learning is
only based on the feature representation of source data. In the
underwater image enhancement, we want to transfer the prior
knowledge from a huge amount of natural images to insufficient
underwater images. The source and target data are different. So we
use the feature transfer learning based on the heterogeneous space
[33]. In this way, we can make the trained model more scalable.

As mentioned above, the inner structure of the convolutional
part imitates the Alexnet. We can transfer the well-learned
knowledge, i.e. super-parameters, from the well-trained Alexnet.
The Alexnet model structure contains up to 60 million parameters
[22]. A large dataset ImageNet has been used to train such a large
network. As the number of underwater images is relatively limited
for deep learning, our proposed model cannot be trained well by
the underwater images. In order to solve the problem of the lack of
underwater image data, the convolution layers of our model are
initialised from the Alexnet model. We transfer the well-trained
parameters as prior knowledge to the first convolutional part of our
deep model. The deconvolutional layers are initialised with Gauss
distribution.

3.5 Training and loss function

The underwater training images come from 3359*2307 underwater
photos which are collected in real environment. To simulate the
different levels of underwater noise scenes, 30, 50 and 70 ml pure
milk are poured into to 1 m3 of water which, respectively, represent
the low, medium and high degradation level of image. In order to
enlarge the dataset, we crop patches (Stride is 66*66) from all these
pictures. We finally get 10,000 training images and 2000 validation
images for the deep network model training. The training
procedure of the network is a pixel-to-pixel work that maps low-
quality images to high-quality images. The mean square error is
used as the loss function in the training process

L(θ) = 1
n ∑

i = 1

n
F(Yi; θ) − Xi

2 (2)

where n is the number of training samples, θ is the weight of the
network, Yi and Xi stand for the noise image and the clear image,
respectively. We use Gaussian distribution to initialise
deconvolution network, as shown in Fig. 3 that Gaussian
initialisation strategies achieve better performance. Stochastic
gradient descent method [34] is used to minimise the loss function.
The most popular standard backpropagation method is used to
update network parameters. The learning rate is set to be 1*10−7.
For the network training, we finally get the best results when the
number of iterations is 100,000 [35].

4 Experiment
In this section, we first analyse and discuss the influence of
network depth and various configurations on the underwater image
enhancement. Then, we compare the proposed method with the
current popular dark channel prior method [8], HE and Fattal's
work [13]. The Caffe toolkit [36] is used to implement the
proposed network. To show the generalisation performance of the
proposed network, the evaluation will also be performed on
publicly available underwater TURBID datasets [37] and the
underwater images captured in our VisionLab.

4.1 Evaluation method

Our underwater enhancement work has two goals: removing noise
and avoiding image distortion. To show the performance of noise

Fig. 2  Convolution and deconvolution procedures
 

Fig. 3  Comparison of with ReLU and without ReLU
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removing, the peak signal-to-noise ratio (PSNR) is used as a
quantitative assessment of the noise standard. We use PSNR index
to evaluate image quality

PSNR = 10log10
(2n − 1)2

MSE (3)

MSE = 1
H ∗ W ∑

i = 1

H

∑
j = 1

W
(X(i, j) − Y(i, j))2 (4)

where n is the pixel number. Formula (4) computes the mean
square error between ground truth X and noisy image Y. H is the
image's height and W is the image's width. The higher the PSNR is,
the better the result of denoising we could get. Meanwhile, we have
to avoid the phenomenon of image distortion in the process of
image enhancement. So the structural similarity index (SSIM) is
suggested to evaluate the similarity between the enhanced image
and the ground truth. SSIM measure the similarity between noisy
image and groundtruth in three aspects: brightness, contrast,
structure

SSIM(X, Y) = (2μxμy + c1)(2δxy + c2)
μx

2 + μy
2 + c1 δx

2 + δy
2 + c2

(5)

where μx, μy, δx, δy, respectively, present the mean value and
variance of X and Y, and δxy is the covariance of X and Y. Here, the
bigger the value of SSIM is, the smaller the distortion could be
achieved.

4.2 Results

To investigate the influence of the depth of the network on the
denoising performance, we carry out different experiments without
skip connection on tenth level degradation image from TURBID
with various network configurations. As shown in Table 2, we can
find that the deeper network does not mean the better performance.

For example, the performance of 3C-and-3D network (3
convolutional layers and 3 deconvolutional layers) performs better
than the 5C-to-5D architecture. We believe the reason is that the
padding operation in the convolution procedure brings noise. In the
case of fewer network layers, the influence of padding noise is
smaller. It can be much obvious when the network becomes deeper
and deeper. Thus, for our encoding–decoding model, the deeper
network does not mean the better underwater image enhancement
performance. Moreover, we also carry out experiments to observe
the performance improvement of skip connection. Here we fix the
network architecture as 3C-and-3D network. The results are
reported in Table 3. We can see that skip connection both improves
the PSNR and SSIM. 

Table 4 shows the performance of our model in comparison
with HE, DSNMF, white balance (WB) and DCP for underwater
TURBID images dataset with different level of degradation. I10,
I12, I14, I16 and I18 stand for the degradation level of 10, 12, 14,
16 and 18 of the images in TURBID dataset. From the
experimental results, we can see that our method achieves
promising improvement than others. 

Figs. 4–6 show the enhanced performance of different methods
at the I10, I14 and I16 turbidity level of TURBID dataset. These
images represent three different levels of degradation with different
amount of milk added. For each figure, clear image without milk is
shown in the first column. The second column represents a
degraded image corresponding to turbidity levels. The rest
columns, respectively, show the results of our P2PNets method,
HE, DSNMF, WB and DCP. 

From these results of figures, we can see that the proposed
P2PNet method restore the turbid images better than others. For
example, HE method makes serious exposure problem. The
DSNMF and WB methods also produce noise while enhancing. It
can be noticed that DCP method improves the luminance.
However, it also causes serious colour distortion. Our method
achieves promising results, which improves the luminance while
does not make any colour distortion.

Fig. 7 shows the effectiveness of the P2PNet and the other
comparison methods on the underwater image collected in our Lab.
We can see that serious exposure and colour distortion appeared
with HE method. DCP method performs well on the corners of
image in good light condition, which can be seen from the lower
right corner of the colour board. However, it failed at the top left of
the colour board where the light condition is bad. The method of
DSNMF failed in both scenes. The effect of WB method is not
obvious. We can see that our proposed method performs much
better than others do. In addition, our method achieves similar
computational performance with the traditional methods, e.g. HE
(0.73 s), WB (0.8 s) and P2PNet (0.81 s). 

5 Conclusion
Underwater imaging plays an important role in marine research.
Due to the special physical properties of underwater environments,
underwater images are different from common ones such as
complicated noise distribution, serious scattering and absorption. In

Table 2 Performance with different number of layersQ6
PSNR SSIM

original image 22.8020 0.7223
2C-and-2D 24.3907 0.7202
3C-and-3D 25.1086 0.7498
5C-and-5D 23.5627 0.6755
 

Table 3 Performance of skip connection
PSNR SSIM

original image 22.8020 0.7223
without skip connection 23.5663 0.7302
with skip connection 25.1086 0.7498
 

Table 4 Comparison results with various images enhancement methods
Noise P2PNets HE DSNMF WB DCP

PSNR
I10 22.8020 26.3050 11.7740 11.6988 17.3238 21.1060
I12 20.6982 25.5723 11.3553 12.1146 16.6753 21.0353
I14 20.5300 24.6234 11.2682 11.7496 16.5328 20.9521
I16 19.4013 22.9310 10.9658 11.8287 16.2316 20.2567
I18 19.4793 21.6675 10.6441 11.3534 15.9372 19.8501

SSIM
I10 0.7223 0.7762 0.6193 0.6909 0.7196 0.7582
I12 0.6284 0.6981 0.5345 0.5844 0.6140 0.6539
I14 0.6191 0.6756 0.5396 0.5700 0.6027 0.6436
I16 0.5931 0.6312 0.4846 0.5383 0.5730 0.6083
I18 0.5783 0.5986 0.4398 0.5139 0.5543 0.5881
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this paper, we proposed an underwater image enhancement model
based on encoding–decoding deep CNN networks. We employ the
convolutional layers as encoding while deconvolutional layers as
decoding. The model achieves the image enhancement in a pixel-
to-pixel adaptive way rather than considering the physical
environment. We provide several comparison experiments with
different datasets. Our method shows good performance in
underwater image enhancement.
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Fig. 4  Comparison experiments on the turbidity turbid images of level-I10
 

Fig. 5  Comparison experiments on the turbidity turbid images of level-I14
 

Fig. 6  Comparison experiments on the turbidity turbid images of level-I16
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