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Learning and Transferring Convolutional Neural
Network Knowledge to Ocean Front Recognition
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Abstract—In this letter, we investigated how to apply a
deep learning method, in particular convolutional neural net-
works (CNNs), to an ocean front recognition task. Exploring deep
CNNs knowledge to ocean front recognition is a challenging task,
because the training data is very scarce. This letter overcomes
this challenge using a sequence of transfer learning steps via
fine-tuning. The core idea is to extract deep knowledge of the
CNN model from a large data set and then transfer the knowledge
to our ocean front recognition task on limited remote sensing (RS)
images. We conducted experiments on two different RS image
data sets, with different visual properties, i.e., colorful and gray-
level data, which were both downloaded from the National
Oceanic and Atmospheric Administration (NOAA). The proposed
method was compared with the conventional handcraft descriptor
with bag-of-visual-words, original CNN model, and last-layer
fine-tuned CNN model. Our method showed a significantly higher
accuracy than other methods in both datasets.

Index Terms— Convolutional neural networks (CNNs), fine-
tuning, ocean front recognition, transfer learning.

I. INTRODUCTION

N RECENT years, remote sensing (RS) has witnessed a

gradual improvement in spatial resolution. The improve-
ment of spatial resolution provided the RS images with
detailed information related to spatial arrangement information
and textural structures. With the advance of new technologies,
researchers have described numerous methods engaging com-
puter vision techniques to classify satellite image scenes. The
bag-of-visual-words (BOVW) model [8], a common handcraft
visual descriptor in computer vision that has been the state
of the art for several years in the community, is considered
one of the most popular approaches to solving the problem of
scene classification. Due to the specificities of remotely sensed
data, many of these traditional methods are not applicable in
the RS domain. In recent years, new methods that are able to
effectively encoding spectral and spatial information have been
proposed. Deep learning methods, especially convolutional
neural networks (CNNs) [2], have gained popularity over
the past years, due to their powerful ability to learn image
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representations. CNNs have been widely studied not only
for classic problems, such as object recognition and detec-
tion, but also in many other practical applications, including
RS imaging. It has obtained state-of-the-art results in many
different RS applications, e.g., oil spill [3], [4]. The success
of CNN:ss is due to their natural ability to effectively encoding
spectral and spatial information based on mainly the data itself.

Ocean front recognition is vital when it comes to providing
enlighten information concerning the properties and dynamics
of the oceans and atmosphere. Thus, ocean front constitutes a
fundamental key to understanding the majority of the oceano-
graphic processes, namely, climate changes. Therefore, the aim
of this letter is to investigate how deep learning methods, in
particular CNNs, can be successfully applied as a new method
to ocean front recognition. Applying CNNs to ocean front
recognition is a challenging task since the specific training
data are very scarce. We overcame this challenge using a CNN
model and a sequence of transfer learning steps via fine-tuning.
The core idea is to extract deep knowledge of the CNN model
from a large data set and then transfer the knowledge to our
task of limited training data. To the best of our knowledge, this
letter presents the first work to apply the deep CNNs method
to the ocean front recognition task.

II. RELATED WORK AND BACKGROUND CONCEPTS

This section presents some fundamental concepts needed to
understand this work.

A. Ocean Front Recognition

Ocean fronts are sharp boundaries between different water
masses and different types of vertical structure, which are
usually accompanied by enhanced horizontal gradients of tem-
perature, salinity, density, nutrients, and other properties [5].
In order to understand the oceanographic processes, ocean
fronts have been a subject of study for many years. The
literature gives a variety of methods and algorithms that have
been proposed to address the problem of ocean front. The most
popular methods include the gradient algorithms and the edge
detector and entropy algorithms [6]. Due to the development
of technological innovation and new instruments over the past
decade, RS data such as high-resolution satellite imagery have
gained popularity and is readily available and inexpensive.
Consequently, with large quantities of data, new algorithms
and methods for ocean front recognition and detection in
satellite imagery have been proposed [7], [8].

B. Convolutional Neural Networks

Deep learning methods [9], more specifically CNNs, are
stated as the most advanced computer vision application for
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recognition and detection tasks. The idea of CNNs was first
proposed by Fukushima [10]. Later on, LeCun et al [11]
designed a CNN model LeNet-5 to recognize hand-written
digits. A typical CNN consists of three types of layers:
the convolution layers, the pooling layers, and the fully-
connected (fc) layers, with the latter being a classifier layer.
It gained popularity over the past years due to the remarkable
results in the ImageNet Challenge 2012 [2]. Thenceforward
several researchers have explored the potential of the deep
CNNs to outperform many classical approaches for object
recognition and detection [12]. It also has been widely studied
for many real practical applications including RS, image
classification, and oil spill [3], [4].

C. Transfer Learning

Transfer learning is preferable when the target data set is
reasonably large, but not enough to train a new network from
scratch. Transfer learning can be a powerful tool to enable
training a large target network. A lot of work has been done
with the CNNs using the transfer learning method in RS fields.
In certain tasks, such as image classification [13] and poverty
mapping [3], transfer learning methods have achieved great
results. The transfer learning methodologies can be separated
into two distinctive subdivisions.

1) Feature Extractor: A pretrained network can be used as
a feature extractor for any image. For instance, one can take
a CNN pretrained model, remove the last fc layer (classifier
layer), and then treat the rest as a fixed feature extractor to
adapt it to the new task. Features trained on ImageNet have
already shown remarkable results in many applications, such
as flower categorization and bird subcategorization [14].

2) Fine-Tuning: Fine-tuning is a good option to extract
features, when the new data set is not large enough to fully
train a new network. The fine-tuning strategy not only replaces
and retrains the classifier to adapt to the new data set, but also
includes weighing the pertained network by continuing the
backpropagation. Fine-tuning can be applied to all layers of the
model or some of the earlier layers can be kept fixed and only
fine-tune some higher level portion of the network. Fine-tuning
has been shown to be the best strategy in the field of RS for
the task of image classification, with remarkable results [3].
More details about how to fine-tuning will be described in the
following sections.

ITI. PROPOSED METHOD

The goal of our work is to apply deep learning method,
i.e., CNNs, to solve the ocean front recognition problem. The
most challenge is the very scarce training dataset. We over-
came the training data scarcity challenge using a sequence
of transfer learning steps via fine-tuning to the CNN model.
To the best of our knowledge, there is no other research on
ocean front recognition based on the state-of-the-art deep CNN
method.

The deep architecture proposed by Krizhevsky et al. [2]
was applied to the fine-tuning procedure. It has 60 million
parameters and 650 000 neurons. This network consists of two
types of layers: convolutional layers and fc layers. The success
of AlexNet popularized the application of large CNNs in visual

ImageNet
Dataset

Fig. 1. Architecture of the CNNs used in our work (AlexNet): five
convolutional layers (conv), two fc layers, and one classifier layer (softmax).

recognition tasks. AlexNet has therefore become a baseline
architecture of modern CNNs. In this letter, AlexNet was used
instead of others deep models, e.g., GoogleNet, because it was
originally designed to classify over ImageNet. On the other
hand, GoogleNet was designed to be a direct improvement
over AlexNet for the task of classifying ImageNet. Compared
with AlexNet of 8 layers, GoogleNet has 22 layers and need
more computing power than AlexNet, even though the number
of parameters in the model is purportedly 12 times smaller.

A. Network Architecture

In this section, we briefly review the CNN architecture
applied in our work. This architecture is presented in Fig. 1.
The architecture takes a square 224 x 224 pixel RGB image
as input and produces a distribution over the ImageNet object
classes. The architecture is composed of five convolutional lay-
ers, three pooling layers, two fc layers, and finally a classifier
layer. Very similar to the typical CNNs, the success of this
architecture is based on several factors, such as availability
of large data sets, more computing power, and availability
of GPUs. The success of the network also depends on the
implementation of additional techniques, such as dropout, data
augmentation to prevent overfitting, and rectified linear units
to accelerate the training phase.

B. Ocean Front Recognition Task

Applying deep learning methods to ocean front recognition
is a challenging task, because fronts have significant visual
similarities and are indistinguishable on color and shape.
In this letter, we focused on an interesting property of modern
CNNs, which is the first few convolutional layers tend to learn
features that resemble edges, lines, corners, shapes, and colors,
independent of the training data. More specifically, earlier
layers of the network contain generic features that should be
useful to many tasks. Since we can define and characterize
front as edges, lines, and corners, modern CNNs can be trained
to recognize ocean front. The task is to train a CNN model
to extract generic features that can be useful to our work.
Generally, to train a full CNN, we need a large data set.
However, our data set was not large enough to train the full
CNNs; therefore, fine-tuning becomes the preferred option to
extract the features.

C. How to Fine-Tune the Network

Fine-tuning a network is a procedure based on the concept
of transfer learning [15]. Specifically, it is a process that adapts
an already learned model to a novel classification model.
There are two possible approaches of performing fine-tuning
in a pretrained network: first is to fine-tune all the layers
of the CNNs. The second approach is to keep some of the
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Transferring the activations of CNNs trained on the ImageNet

Fine-tuning all layers except the softmax layer

Fig. 2. Fine-tuning process. All layers are fine-tuned; basically, the last
layer (softmax classifier layer) is ignored and only the layer used to extract
the features needs to be defined.
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Fig. 3. Examples of the two data sets colorful and gray-level. (a) Class front
from colorful data. (b) Class no-front colorful data. (c) Class front gray-level.
(d) Class no-front gray-level.

earlier layers fixed (to avoid overfitting) and fine-tune only
the higher level layers of the network. In the first approach,
the classifier layer is removed from the pretrained CNNs and
the rest of the CNNs are treated as a fixed feature extractor.
In the second approach, the initial layers are frozen to keep
the generic features already learned and the final layers are
adjusted for the specific task. In other words, fine-tuning uses
the parameters learned from a previous pretrained network
on a specific data set and then adjusts the parameters from
the current state for the new data set. In this letter, we fine-
tuned all layers and assumed that the features from all layers
were important for our task. The workflow for this approach
is illustrated in Fig. 2.

1V. EXPERIMENTS
To evaluate the effectiveness of the proposed method, exper-
iments were conducted on two different RS image data sets,
illustrated in Fig. 3.

A. Data Sets

We applied two challenging RS data sets with different
properties to better evaluate the robustness and effectiveness
of the proposed method described above. The data obtained
from the National Oceanic and Atmospheric Administra-
tion (NOAA) contains data from different region and dif-
ferent years and are posteriorly processed and labeled using
MATLAB. Two distinct data, colorful and gray-level data,
were processed and each type of data contained two classes,
front and no-front. The primary difference recorded between
these two data sets is the color property, of which the gray-
level images are original images. The colorful images were
processed by interpolation algorithms. In order to validate
the effectiveness of the proposed method in real applications,

we used the original gray sea surface temperature (SST)
images to appraise the proposed method.

This data set is particularly challenging to be labeled as
front and no-front. To label our data, we first calculated the
gradient for each pixel. For a gradient higher than two, the
pixel was set as a fixed pixel. Afterward, the gradient of
the next ten neighborhoods were calculated and described
as indicated above. Results higher than two were cut into
small pictures and labeled as front. Due to lack of knowledge
and the difficulty of the task, the pictures were validated by
professional oceanographers.

The two data sets colorful and gray-level are composed
for 2000 images each, divided into two classes: 1) the front
class contains 1279 images and 2) the no-front class contains
721 images. All high-resolution images referring to different
regions and years were collected from NOAA. We processed
all the images with a grid size of 2° for both data sets.
The colorful date is RGB images with different sizes. Some
samples of this dataset are presented in Fig. 3(a) and (b).
The gray-level data used just one channel with different sizes.
Some samples are shown in Fig. 3(c) and 3(d).

B. Training Procedure

We created our preliminary training and validation sets
by taking a stratified 10-fold of the provided training set,
which split the provided training set into 90% for training
and 10% for test, with two classes distributions as the pro-
vided training set [16]. To fine-tune the model, we kept the
structure of pretrained model unchanged and removed only
the last layer (classifier layer). The last layer of the original
CNNs is a softmax classifier that computes the probability of
1000 classes of the ImageNet data set. After removing the last
layer, we adjusted the others parameters to fit our goal. The
pretrained CNNSs required a fixed size (e.g., 224 x224) as input
image. Therefore, each image was resized to a fixed size in the
network. We also changed the number of classes to just two,
the front class and no-front class. For the training parameters,
we ran the code for 5000 iterations and set the learning rate to
a very small variations of 0.01 and 0.001. In addition, we fine-
tuned the pretrained model with our training data to learning
the weights inside the model. Then we used a support vector
machine (SVM) classifier to classify the new learned feature,
instead of using the softmax layer.

All our experiment sessions were carried out using the pre-
trained AlexNet model, available in the Caffe Model Zoo [17].
And we ran experiments on a dual eight-core Intel Xeon
E5-2650 processor, with a Tesla K40 (2880 cores and 12 GB
of RAM).

C. Comparison Methods

The performance of the proposed method was compared
with the original CNN model, the last-layer fine-tuned CNN
model and the conventional handcraft descriptor with BOVW,
which are the most popular approaches for image analysis and
classification and have been widely used for general object
recognition.

We conducted the experiments with both data sets and
used the same configurations. In order to select the best
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TABLE I

ACCURACIES OF THE FINE-TUNING PROCESS OF
ALEXNET MODEL IN EACH DATA SET

AlexNet Fine-tuning all layers %
Colorful 88
Gray-level 86
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Fig. 4. Classification performance of the CNN features extracted from each
layer of AlexNet. We used SVM to do the classification.

configuration for our experiment, we test BOVW in different
configurations. The best BOVW configurations are based on
dense sampling, soft assignment with max pooling, Scale
Invariant Features Transform low-level descriptor, and a visual
size of 50.

V. RESULTS

The data set was different from the original data set
and there were only two classes in the study. Furthermore,
CNN models are designed and trained for generic object and/or
scene recognition and not for RS images. Surprisingly, the
results from the study were better than initially expected.
As shown in Table I, the normalized accuracy of the proposed
method of each data set in AlexNet reached an accuracy
of 88% for the colorful data and 86% for the gray-level data.

A. Performance of Different Convolutional Layers

After the fine-tuned model was obtained, we conducted
feature extraction based on the model as discussed before.
We then built an SVM classifier on top of the deep features
generated from the fine-tuned CNNs. The classification results
are shown in Fig. 4. The classification accuracy for the colorful
data increased very slowly in the first five convolutional layers.
The accuracy then dropped in the first fc layer. However,
during the last fc layer, the accuracy increased to the highest
accuracy. The classification accuracy for the gray-level data
increased faster than for the colorful data in first five con-
volutional layers, and the last fc layer was validated as the
more accurate. The colorful data achieved better result during
the last fc layer compared with gray-level data. We believe

Fig. 5. Features visualization of convolutional layers of AlexNet.
(Top) CNN features from colorful data. (Left) Visualization of class front.
(Right) Visualization of class no-front. (Bottom) CNN features from gray-
level data.

that the possible explanation for the better performance of
AlexNet in the colorful data rather than the gray-level data
was due to the particular intrinsic properties of each data set.
The color properties are significantly important since the first
convolutional layers tend to learn features that resemble color.

B. Features Visualization

Understanding the operation of visualization of features
learned by a CNN model requires interpreting the feature
activity in intermediate layers. Fig. 5 shows feature visualiza-
tions from our proposed model once training was completed.
From the results, we can see that the features from early
layers 1-3 show better result compared with those from latter
ones 4-5. We speculate that it may be due to the first
convolutional layer tendency to learn features that resemble
color, edges, lines, corners and shapes. The earlier layers of
the network contain generic features that should be useful to
the ocean front recognition task. The latter layers are closer
to the label layer of the nature image classification problem,
and thus they contained task-specific features that may not
help our application.

C. Comparison With Different Baselines

Fig. 6 shows the comparison in terms of normalized accu-
racy of our proposed method with different baselines: full
training, fine-tuning higher layers, and BOVW. We first trained
and tested the original AlexNet only with our data sets, and the
results were very similar in both datasets. However, the full
training performed better in the colorful data (83%) and in the
gray-level data (81%). Comparing the results of the proposed
method in relation to fine-tuning higher layers, we observe a
big difference in the results, 55% in the colorful data and 45%
in the gray-level data. One possible reason is that the earlier
layers of the network tendency learn features that resemble
color, edges, lines, corners, and shapes, which should be useful
to the ocean front recognition task. Comparing the results of
BOVW with those of our method, we can see that our proposed



358 IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, VOL. 14, NO. 3, MARCH 2017

|-0ur method [ Full training [ Fine-tuning higher layers :BO\-‘W'

1 T T

09r b

0.3

0.2

0.1

Colorful Gray-level

Fig. 6. Comparison of the proposed method with different baselines.

Fig. 7.
SST image.

Result of the traditional edge detection method for a representative

method provides better results than the BOVW that achieved
68% in the colorful data and 54% in the gray-level data. The
results showed that our proposed method achieved the highest
accuracy in both data sets, 88% in the colorful data and 86%
in the gray-level data.

D. Validation of the Proposed Method

To validate the effectiveness of the proposed method to
an ocean front recognition task, we first used the traditional
edge detection method to detect the front using SST images.
Based on the result shown in Fig. 7, the images were collected
with different scales, with front and no-front annotated by
professional oceanographers. Then the evaluation of the final
classification was performed using these images as input for
our classification method and reached an accuracy of 87%.

Notwithstanding, the wrong classified images were those
images with a small scale, which did not present any visually
similarity with our training images. However, it is worth
mentioning that the images with significantly small scale were
not included during the fine-tuning process, but in the final
classification performance as input images instead.

VI. CONCLUSION

In this letter, we have investigated how to apply deep
learning methods to the ocean front recognition task. The
proposed method involves CNNs and transfer learning via fine-
tuning. We demonstrated the capability of pretrained CNNs,
transferred from the ImageNet data set via fine-tuning, to
perform an ocean front recognition task, using RS images.
In order to better evaluate our method, we conducted our
experiments on two different RS image data sets, with different
visual properties colorful and gray-level data. In future work
we plan to design new deep architectures instead of the CNNs
for ocean front recognition tasks.
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